B An Introduction to OOP with Java u

Chapter 15

Searching, Sorting, and
Recursive Algorithms

OBJECTIVES

After you have read and studied this chapter, you should be
able to

» Write recursive algorithms for mathematical functions and non-
numerical operations.

* Perform linear and binary search algorithms on small arrays.

» Determine whether linear or binary search is more effective for
a given situation.

» Perform selection and bubble sort algorithms.

» Describe the recursive quicksort algorithm and explain how its
performance is better than the other two sorting algorithms.

CH 15 Searching, Sorting, and Recursive Algorithms 1of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java

FIGURE 15.1 Successful and unsuccessful searches.

Unsuccessful Search: search(45) —» NOT_FOUND (-1)

Successful Search: search(12) —» 4
number o 1 2 3. 4. 5 6 7 8

\' 23| 17 5 90 | 12 44 |\ 38| 84 |77

FIGURE 15.2 Effect of one comparison in binary search.

5 12 17 23 38 44 | 77 84 |90
- >
number]i] < 38 38 < number(i]
search 77 must be in this
half of the array.
0 1 2 3 4 5 6 7 8
44 77 84 |90
No need to consider
search

the left half anymore.

20f12

CH 15 Searching, Sorting, and Recursive Algorithms

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction

to

OOP with

Java L

FIGURE 15.3 How the unsuccessful search is terminated in the binary

@

search routine.

Suppose we search for 45

012 345¢6178
5(12 17233844 778490

I

mid=4

38 <45

so set low = mid+1

012 3456738

|

4477 8490

'

low=5 high=8
mid=6
77 > 45

so set high = mid-1

®

012 3456738
44

R

low=5

high=5
mid=5

44 < 45
so set low = mid+1

012 3456738

X

low=6 high=5

low > high

SO no more elements to search

CH 15 Searching, Sorting, and Recursive Algorithms

McGraw-Hill Publishing
© All Rights Reserved 1999

3o0f12

B An Introduction to OOP with Java u

FIGURE 15.4 Human sorting algorithm after three numbers are moved to
the sorted list.

0\1/\2/ 3\4/ 5 6 7 8

original list 23 y X 90 \}é 44 | 38| 84 | 77

sorted list 5 12 | 17

FIGURE 15.5 Effect of executing the first pass in the selection sort.

start min

v v

0 1 2 3 4 5 6 7 8
23 | 17 5 90 12 44 | 38 | 84 | 77

1 1

exchange

17 23 | 90 12 44 38 | 84 |77

- |
sorted unsorted

CH 15 Searching, Sorting, and Recursive Algorithms 4 0of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction

to OOP with

Java

FIGURE 15.6 Eight passes to sort the sample array of nine elements.

pass

0O 1 2 3 4 5 6 7 8

1 | 23175 |90 12| 44 39 84|77

L1

0 1 2 3 4 5 6 7 8
2 |5

17| 23 90| 1
_T—T

2| 44 38 84|77

0 1.2 3 4 5 6 7 8

3 | 5(12| 23 90 17| 44 38 84|77
— 1]

0 1 2 3 4 5 6 7 8

4 | 5112| 17 90| 23| 44 38 84|77

!

sorted

pass

1

2

3 4 5 6 7 8

12

17

23| 90| 44 38 84|77

1

2

3 4 5 6 7 8

12

17

23| 38| 44 77 84|90

1

2

3 4 5 6 7 8

12

17

23| 38| 44 77 84|90

CH 15 Searching, Sorting, and Recursive Algorithms

McGraw-Hill Publishing
© All Rights Reserved 1999

5o0f 12

B An Introduction to OOP with Java u

FIGURE 15.7 Effect of executing the first pass in the bubble sort.

o 1 2 3 4 5 6 7 8
23|17 |5 | 90| 12| 44| 38| 84|77

)

exchange

o 1 2 3 4 5 6 7 8
1723 |5 | 90| 12| 44| 38| 84 |77

[

exchange

o 1 2 3 4 5 6 7 8
17| 5 | 23| 90| 12| 44| 38| 84 |77

T M 7

exchange

o 1 2 3 4 5 6 7 8
17| 5 | 23| 12|90 | 44| 38| 84 |77

T 1
exchange
Notice how the value 90 mi-
grates toward its correct po- 0 1 2 3 4 5 6 7 8
sition. In addition, other 17| 5 | 23| 12| 44| 90| 38| 84|77
values also move toward g roA
their correct positions. exchange

o 1 2 3 4 5 6 7 8
17| 5 | 23| 12| 44 | 38| 90| 84 |77

T 7

exchange

o 1 2 3 4 5 6 7 8
17| 5 | 23| 12| 44 | 38| 84| 90 |77

)

exchange

Effect: The largest ele- 0 1 2 3 4 5 6 7 8

ment moves to its correct
position. — 17| 5 | 23| 12| 44| 38| 84| 77|90

CH 15 Searching, Sorting, and Recursive Algorithms 6 of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java u

FIGURE 15.8 How to generate all anagrams of a word using recursion.

Find all anagrams of aword | H A L 0

m Hi AL L] 0 Recursiar
@ e - Apply recursion to find
l Rotate Left

all anagrams of these
three letters.

Recursiar
l Rotate Left
L 0 H Al - :
, Recursion
l Rotate Left
- .
O [H] A L] Recursiomn
CH 15 Searching, Sorting, and Recursive Algorithms 7 of 12
[|

McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java u

FIGURE 15.9 Tower of Hanoi with N = 4 disks.

Start
| |
Peg 1 Peg 2 Peg 3
Goal
| |
Peg 1 Peg 2 Peg 3
CH 15 Searching, Sorting, and Recursive Algorithms 8 of 12
[|

McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java u

FIGURE 15.10 Recursive solution to the Tower of Hanoi puzzle.

O) Recursioni g

Peg 1 Peg 2 Peg 3

Move N-1 disks
from Pegl to Peg 2

£ - =_

Pegl Peg2 Peg3 | Peg 1l Peg 2 Peg 3
10 move N disks Move one disk

from Peg 1 to Peg 3 from Peg1 to Peg 3

; Recursion |

Peg 1 Peg 2 Peg 3

Move N-1 disks
from Peg 2 to Peg 3

CH 15 Searching, Sorting, and Recursive Algorithms 9 of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java

FIGURE 15.11 The core idea of the quicksort algorithm.

low

v

high

P

Any element can be used as
a pivot. For simplicity, we
use number[low] as pivot p.

partition

number[i] <p v p < numberfi]
ZAN

P

Quic

sort

mm XN mum

\/

}

mid

Quicksort

\/

FIGURE 15.12 Result of partitioning using 23 as a pivot.

start end
0 1 2 3 4 5 6 7 8
23| 17| 5 | 90| 12| 44| 38 84 |77
i
partition
0 1 2 3 4 5 6 7 8
120 17| 5 | 23| 90| 44| 38| 84 | 77
mid

CH 15 Searching, Sorting, and Recursive Algorithms

McGraw-Hill Publishing
© All Rights Reserved 1999

10 of 12

B An Introduction to OOP with Java u

FIGURE 15.13 Details of one partitioning.

start

¢

end

'

pivot = number(start]; 0 1 2 34 5 6 7 8 pi2V30t
2417/ 5 90l 12| 44 3d 84 77| (23

- 7

start end

¢ ¢

while (number[end] > pivot) 0 1 2 34 5 6 7 8 Ppvot
end-— 23 17| 5| 90 12| 44 39 84/77| |23
start end
_ : 0 1 2 3 4 5 6 7 8 npivot
number[start] = number[end]; I ‘ 12 17‘ 5 ‘ 90‘ 12‘ 44 33 84\ 77‘ m‘
>~ o/
start end
while (number(start] < pivot) 0 1 2 3 4 5 6 7 8 pivot
start++; 1217] 5 | 90 12 44 34 8477
start end
0 1 2 3 4 5 6 7 8 pivot
number[end] = number][start]; I 14170 5 1 90 90| 44 34 8477 23
end
start
0 1 2 34 5 6 7 8 pivot
number[end] = pivot;
endl=p I 1217 5|23 90| 44 38 8477 |23
CH 15 Searching, Sorting, and Recursive Algorithms 11 of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

B An Introduction to OOP with Java u

FIGURE 15.14 A hierarchy of partitioning an array into smaller and smaller
arrays in the quicksort.

Number of Size of each
Level No. subarray_s subarray
s at Level i at Level i
0 1 =29 N=nN/2°
1 | | | 2 =9l N/2=N/21
2 | || | 4 = 24 N/4=N/?22

K DADﬁ DAD N 1=N/2K

FIGURE 15.15 Recursive calls to compute fib onacc i(9).

fibonacci(5)

fibonacci(4) + fibonacci (3)

fibonacci(2) + fibonacci (1)

fibonacci(1) + fibonacci (0)

—| fibonacci(3) + fibonacci (2)

fibonacci(1) + fibonacci (0)

fibonacci(2) + fibonacci (1)

fibonacci(1) + fibonacci (0)

CH 15 Searching, Sorting, and Recursive Algorithms 12 of 12

]
McGraw-Hill Publishing
© All Rights Reserved 1999

