## Chapter 3

## Numerical Data

## OBJECTIVES

After you have read and studied this chapter, you should be able to

- Select proper types for numerical data.
- Write arithmetic expressions in Java.
- Evaluate arithmetic expressions using the precedence rules.
- Describe how the memory allocation works for objects and primitive data values.
- Write mathematical expressions using methods in the Math class.
- Write programs that input and output data using the InputBox and OutputBox classes from the javabook package.
- Apply the incremental development technique in writing programs.
- (Optional) Describe how the integers and real numbers are represented in memory.

TABLE 3.1 Java numerical data types and their precisions.

| Data <br> Type | Content | Default <br> Value | Minimum <br> Value | Maximum <br> Value |
| :--- | :--- | :---: | :---: | :---: |
| byte | Integer | 0 | -128 | 127 |
| short | Integer | 0 | -32768 | 32767 |
| int | Integer | 0 | -2147483648 | 2147483647 |
| long | Integer | 0 | -9223372036854775808 | 9223372036854775807 |
| float | Real | 0.0 | $-3.40282347 \mathrm{E}+38^{\mathrm{a}}$ | $3.40282347 \mathrm{E}+38$ |
| double | Real | 0.0 | $-1.79769313486231570 \mathrm{E}+308$ | $1.79769313486231570 \mathrm{E}+$ |

a.The character E indicates a number is expressed in scientific notation.

FIGURE 3.1 A diagram showing how two memory locations (variables) with names firstNumber and secondNumber are declared, and values are assigned to them.


FIGURE 3.2 A difference between object declaration and numerical data declaration.

Numerical Data

```
int number;
```

number = 237;
number = 35;
number $\square$

## Object

```
Customer customer;
customer = new Customer();
customer = new Customer();
```

customer $\square$
int number;
number = 237;
number $=35$;
Customer customer;
customer = new Customer();
customer = new Customer();
number $\square$

int number;
number = 237;
number $=35$;

Customer customer;
customer = new Customer();
customer $=$ new Customer();
number 35


FIGURE 3.3 An effect of assigning the content of one variable to another.

## Numerical Data

```
int number1, number2;
number1 = 237;
number2 = number1;
```

number1 $\square$
number2 $\square$

## Object

Customer profWu, drCafe; profWu = new Customer(); drCafe = profWu;
profWu $\square$ drCafe $\square$
int number1, number2;
number1 = 237; number2 = number1;
number1 237
number2


Customer profWu, drCafe;
profWu = new Customer(); drCafe = profWu;

drCafe $\square$

Customer profWu, drCafe; profWu = new Customer(); drCafe = profWu;
profWu

drCafe


TABLE 3.2 Arithmetic operators.

| Operation | Java Operator | Example |  |  | Value $(x=10, y=7, z=2.5)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Addition | + | x | + | Y | 17 |
| Subtraction | - | x | - | y | 3 |
| Multiplication | * | x | * | y | 70 |
| Division | / |  | / | Y | 1 |
|  |  | x | 1 | z | 4.0 |
| Modulo division (remainder) | \% | x | \% | y | 3 |

TABLE 3.3 Precedence rules for arithmetic operators and parentheses.

| Order | Group | Operator | Rule |
| :---: | :---: | :---: | :---: |
| High | subexpression | ( ) | Subexpressions are evaluated first. If parentheses are nested, the innermost subexpression is evaluated first. If two or more pairs of parentheses are on the same level, then they are evaluated from left to right. |
|  | unary operator | -, + | Unary minuses and pluses are evaluated second. |
|  | multiplicative operator | *, 1, \% | Multiplicative operators are evaluated third. If two or more multiplicative operators are in an expression, then they are evaluated from left to right. |
| Low | additive operator | +, - | Additive operators are evaluated last. If two or more additive operators are in an expression, then they are evaluated from left to right. |

TABLE 3.4 Rules for arithmetic promotion.

| Operator Type | Promotion Rule |
| :--- | :--- |
| Unary | 1. If the operand is of type byte or short, then it is con- <br> verted to int. |
| 2. Otherwise, the operand remains the same type. |  |

## TABLE 3.5 Math class methods for commonly used mathematical functions.

| Class Method | Argument Type | Result Type | Description | Example |
| :---: | :---: | :---: | :---: | :---: |
| abs ( a ) | int | int | Returns the absolute int value of a. | $\begin{aligned} & \text { abs(10) }>10 \text { abs }(- \\ & 5)>5 \end{aligned}$ |
|  | long | long | Returns the absolute long value of a. |  |
|  | float | float | Returns the absolute float value of a. |  |
| $\operatorname{acos}(\mathrm{a})^{\text {a }}$ | double | double | Returns the arc cosine of a. | $\begin{aligned} & \operatorname{acos}(-1) \\ & \quad, \quad 3.14159 \end{aligned}$ |
| $\operatorname{asin}(\mathrm{a})^{\dagger}$ | double | double | Returns the arc sine of a. | $\begin{aligned} & \operatorname{asin}(1) \\ & , 1.57079 \end{aligned}$ |
| $\operatorname{atan}(\mathrm{a})^{+}$ | double | double | Returns the arc tangent of a. | $\begin{aligned} & \operatorname{atan}(1) \\ & >0.785398 \end{aligned}$ |
| ceil ( a ) | double | double | Returns the smallest whole number greater than or equal to $\mathbf{a}$. | $\begin{aligned} & \operatorname{ceill(5.6)~}>6.0 \\ & \operatorname{ceil(5.0)~} 5.0 \\ & \operatorname{ceil}(-5.6)>-5.0 \end{aligned}$ |

TABLE 3.5 Math class methods for commonly used mathematical functions. (Continued)

| Class Method | Argument Type | Result Type | Description | Example |
| :---: | :---: | :---: | :---: | :---: |
| $\cos (\mathrm{a})^{\dagger}$ | double | double | Returns the trigonometric cosine of a. | $\cos (\pi / 2)>0.0$ |
| $\exp (\mathrm{a})$ | double | double | Returns the natural number e (2.718...) raised to the power of $\mathbf{a}$. | $\begin{aligned} & \hline \exp (2) \\ & >7.389056099 \end{aligned}$ |
| floor ( a ) | double | double | Returns the largest whole number less than or equal to $\mathbf{a}$. | $\begin{aligned} & \text { floor }(5.6)>5.0 \\ & \text { floor }(5.0)>5.0 \\ & \text { floor }(-5.6)>-6.0 \end{aligned}$ |
| $\log (\mathrm{a}$ ) | double | double | Returns the natural logarithm (base e) of a. | $\log (100)>2.0$ |
| $\max (\mathrm{a}, \mathrm{b})$ | int | int | Returns the larger of a and $\mathbf{b}$. | $\begin{gathered} \max (10,20) \\ >20 \end{gathered}$ |
|  | long | long | Same as above. |  |
|  | float | float | Same as above. |  |
| $\min (\mathrm{a}, \mathrm{b})$ | int | int | Returns the smaller of a and $\mathbf{b}$. | $\begin{array}{r} \min (10,20) \\ >10 \end{array}$ |
|  | long | long | Same as above. |  |
|  | float | float | Same as above. |  |
| pow ( a, b ) | double | double | Returns the number a raised to the power of $\mathbf{b}$. | $\begin{gathered} \hline \operatorname{pow}\left(\begin{array}{c} 2.0, \\ \\ >8.0) \end{array}\right. \end{gathered}$ |
| random ( ) | $\begin{gathered} \text { <no argu- } \\ \text { ment> } \end{gathered}$ | double | Generates a random number greater than or equal to 0.0 and less than 1.0 | Examples given in Chapter 6. |
| round ( a ) | float | int | Returns the int value of a rounded to the nearest whole number. | $\begin{gathered} \operatorname{round}(5.6)>6 \\ \operatorname{round}(5.4)>5 \\ \operatorname{round}(-5.6) \\ >-6 \end{gathered}$ |
|  | double | long | Returns the float value of a rounded to the nearest whole number. |  |
| $\sin (\mathrm{a})^{\dagger}$ | double | double | Returns the trigonometric sine of $\mathbf{a}$. | $\begin{array}{r} \sin (\pi / 2) \\ >1.0 \end{array}$ |

TABLE 3.5 Math class methods for commonly used mathematical functions. (Continued)

| Class <br> Method | Argument <br> Type | Result <br> Type | Description | Example |
| :--- | :---: | :---: | :--- | :--- |
| $\operatorname{sqrt}(\mathrm{a})$ | double | double | Returns the square root <br> of a. | $\operatorname{sqrt(9.0)~>3.0}$ |
| $\tan (\mathrm{a})^{\dagger}$ | double | double | Returns the trigonometric <br> tangent of a. | $\tan (\pi / 4)$ <br> $>1.0$ |

a. All trigonometric functions are computed in radians.

FIGURE 3.4 The InputBox dialog after its method getInteger is executed.


## Enter an integer:



OK

FIGURE 3.5 The InputBox dialog after a noninteger value is entered by the user.

## InputBox $\times$

Invalid entry. Try again...
Enter an integer:


## OK

FIGURE 3.6 An InputBox object with a programmer-specified prompt.

## InputBox $\times$

Enter your age:


TABLE 3.6 A partial list of InputBox methods.

| CLASS: <br> Method | InputBox <br> Argument |  |
| :--- | :--- | :--- |
| getFloat | <none> <br> or <br> text | Allows the user to enter a real number, a num- <br> ber with or without a decimal point. The Input- <br> Box dialog object will not close until the user <br> enters a valid real number. If there is no argu- <br> ment, then the default prompt Enter a Float is <br> displayed in the dialog. If a text value is passed <br> as the argument, then it is used as a prompt in <br> the dialog. |
| get Integer | <none> <br> or <br> text | Allows the user to enter an integer, a number <br> without a decimal point. The InputBox dialog <br> object will not close until the user enters a valid <br> integer. If there is no argument, then the default <br> prompt Enter an Integer is displayed in the <br> dialog. If a text value is passed as the argument, <br> then it is used as a prompt in the dialog. |

FIGURE 3.7 Result of executing outputBox.print("Hello, Dr. Caffeine.").

## OutputBox

Hello, Dr. Caffeine.

FIGURE 3.8 Result of sending five print messages to outputBox of Figure 3.7.

```
int x, y;
x = 123;
y = x + x;
outputBox.print(" x = ");
outputBox.print( x );
outputBox.print(" x + x = ");
outputBox.print( y );
outputBox.print(" THE END");
```

OutputBox
Hello, Dr. Caffeine. $\mathrm{x}=123 \mathrm{x}+\mathrm{x}=246$ THE END

FIGURE 3.9 Result of sending four printLine messages to outputBox.

```
int x, y;
x = 123;
y = x + x;
outputBox.printLine("Hello, Dr. Caffeine.");
outputBox.print(" x = ");
outputBox.printLine( x );
outputBox.print(" x + x = ");
outputBox.printLine( y );
outputBox.printLine(" THE END");
```


## OutputBox

Hello, Dr. Caffeine.
$\mathrm{x}=123$
$x+x=246$
THE END

TABLE 3.7 A partial list of OutputBox methods.

| CLASS: <br> Method | OutputBox <br> Argument |  |
| :--- | :--- | :--- |
| print | number <br> or <br> text | Prints out the number or text passed as an argument in <br> the dialog. Printing will continue from the end of cur- <br> rently displayed output. |
| printLine | number <br> or <br> text | Same as the print method, but the line is skipped after <br> the output so the next output will continue from the <br> next line. |
| skipLine | integer | Skips N lines where N is an integer passed as an argu- <br> ment. |
| saveToFile | filename | Saves the contents of an OutputBox to a file whose <br> name is passed as an argument. If the designated file <br> already exists, then the current contents of the file are <br> erased and replaced by the contents of the OutputBox. |
| appendToFile | filename | Appends the contents of an OutputBox to a file whose <br> name is passed as an argument. If the designated file <br> does not exist, then this method works like the saveTo- <br> File method. |

