
A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
C h a p t e r 4

D e f i n i n g I n s t a n t i a b l e C l a s s e s

OBJECTIVES
After you have read and studied this chapter, you should be
able to

• Define an instantiable class with multiple methods and a con-
structor.

• Differentiate the local and instance variables.

• Define and use value-returning methods.

• Distinguish private and public methods.

• Distinguish private and public data members.

• Describe how the arguments are passed to the parameters in
method definitions.

• Use System.out for temporary output to verify the program
code.
McGraw-Hill Publishing
© All Rights Reserved 1999

1 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
class
{

. . .

}

FIGURE 4.1 A program template for a class definition.

Class Name

Methods

Import Statements

Comment

Declarations
Declare data mem-
bers shared by mul-
tiple methods here,
outside of method
declarations.
McGraw-Hill Publishing
© All Rights Reserved 1999

2 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 4.2 Every object of a class has its own copy of instance
variables. CurrencyConverter objects have their own copy
of exhangeRate instance variables.

CurrencyConverter

exhangeRate

1.792

markConverter

CurrencyConverter

exhangeRate

130.77

yenConverter

CurrencyConverter markConverter, yenConverter;

markConverter = new CurrencyConverter();
markConverter.setExchangeRate(1.792f);

yenConverter = new CurrencyConverter();
yenConverter.setExchangeRate(130.77f);
McGraw-Hill Publishing
© All Rights Reserved 1999

3 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
/*

Method: setExchangeRate

Purpose: Sets the exchange rate to the value passed

to this method

Parameters:

float rate

- the exchange rate

Returns: None

*/

/******************************
Public Methods:

floatfromDollar (float)
floattoDollar (float)
void setExchangeRate ()

*****************************/
McGraw-Hill Publishing
© All Rights Reserved 1999

4 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
public float fromDollar(
float dollar)
{

float amount, fee;

amount
 = dollar * exchangeRate;

fee = dollar * feeRate;

return (amount - fee);
}

FIGURE 4.3 How memory space for a local variable is allocated and
deallocated.

amt =
 yenConverter.fromDollar(200);

State of Memory

amount

B

after B is executed

C

D

after C is executed at D after fromDollar

26154.0

Memory space is al-
located for the local
variables.

Computed values
are assigned to the
local variables.

Memory space is
deallocated upon
exiting the method.

 at A before fromDollar

Local variables do
not exist before the
method execution.

A

Execution Flow

fee

amount

fee 1307.0
McGraw-Hill Publishing
© All Rights Reserved 1999

5 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
public void myMethod(int one,
 float two)
{

one = 25;
two = 35.4f;

}

FIGURE 4.4 How memory space for the parameters is allocated and
deallocated.

x = 10;
y = 20;
tester.myMethod
 (x, y);

State of Memory

B

 values are copied at B

C

D

after C is executed at D after myMethod

The values of argu-
ments are copied to the
parameters.

The values of parame-
ters are changed.

Parameters are erased.
Arguments are un-
changed.

 at A before myMethod

Local variables do not
exist before the method
execution.

A

Execution Flow

x

y

x

y

x

y

x

y

one

two

one

two

10

20

10

20

10

20

10

20

10

20.0f

25

35.4f
McGraw-Hill Publishing
© All Rights Reserved 1999

6 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 4.5 The object diagrams for the Chapter 3 LoanCalculator
program and the one we are designing here. Not all methods
are shown here to simplify the diagrams.

LoanCalculator

main

MathMain

Chapter 3 Program

Chapter 4 Program

Window

InputBox OutputBox

LoanCalculatorMain

main

Math

Main
Window

InputBox OutputBox

Loan
Calculator
McGraw-Hill Publishing
© All Rights Reserved 1999

7 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 4.6 The object diagram for Alternative Design 1. MainWindow ,
OutputBox , and InputBox objects are not shown.

LoanCalculatorMain

main

loanCalculator

LoanCalculator

descibeProgram computePayment

displayOutputgetInputs

FIGURE 4.7 The object diagram for Alternative Design 2. MainWindow ,
OutputBox , and InputBox objects are not shown.

LoanCalculatorMain

main

loanCalculator

LoanCalculator

descibeProgram

computePayment

displayOutput

getInputs

start
McGraw-Hill Publishing
© All Rights Reserved 1999

8 of 9 4 Defining Instantiable Classes

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
LoanC alculatorM ain

m ain

loanCalcula tor.start();

FIGURE 4.8 The difference between calling a method belonging to the
same class and a method belonging to a different class.

Dot notation is not neces-
sary when a method be-
longing to the same class
is called.

Dot notation is necessary
when the method belong-
ing to another class is
called.

loanCalculator

LoanCalculator

getInput

getInput();

start

loanCalculator

LoanCalculator

descibeProgram

computePayment

displayOutput

getInputs

start
McGraw-Hill Publishing
© All Rights Reserved 1999

9 of 9 4 Defining Instantiable Classes

