
A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH

C h a p t e r 8

C h a r a c t e r s a n d S t r i n g s

OBJECTIVES
After you have read and studied this chapter, you should be
able to

• Declare and manipulate data of the char data type.

• Write string processing programs using String and StringBuffer ob-
jects.

• Differentiate the String and StringBuffer classes and use the correct
class in solving a given task.

• Distinguish the primitive and reference data types and show
how the memory allocation between the two is different.

• Tell the difference between equality and equivalence testings
for String objects.

• Show, by using the state-of-memory diagrams, how objects are
passed to methods and returned from methods.
McGraw-Hill Publishing
© All Rights Reserved 1999

1 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH

TABLE 8.1 ASCII Codes.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

10 lf vt ff cr so si dle dc1 dc2 dc3

20 cd4 nak syn etb can em sub esc fs gs

30 rs us sp ! " # $ % & '

40 () * + , - . / 0 1

50 2 3 4 5 6 7 8 9 : ;

60 < = > ? @ A B C D E

70 F G H I J K L M N O

80 P Q R S T U V W X Y

90 Z [\] ^ _ ` a b c

100 d e f g h i j k l m

110 n o p q r s t u v w

120 x y z { } | ~ del

FIGURE 8.1 An indexed expression is used to refer to individual
characters in a string.

String name = "Sumatra";

S u m a t r a

name.charAt(3)
The method returns the
character at position #3.

The variable refers to
the whole string.

0 1 2 3 4 5 6

name
McGraw-Hill Publishing
© All Rights Reserved 1999

2 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 8.2 The taxonomy of data types.

Data Type

Primitive Reference

byte short int long

float double

boolean char

String

MessageBox
OutputBox

etc.

MainWindow

Graphics Applet

FIGURE 8.3 Effect of assigning an integer value to a variable.

State of Memory

num1 14
McGraw-Hill Publishing
© All Rights Reserved 1999

3 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 8.4 Effect of assigning values to integer variables.

int num1, num2;

num1 = 14;

num2 = num1;

num1 += 5;

State of Memory

num1

num2

14

14

num1

num2

19

14

A

after B is executed
int num1, num2;

num1 = 14;

num2 = num1;

num1 += 5;B

after A is executed
McGraw-Hill Publishing
© All Rights Reserved 1999

4 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 8.5 Effect of assigning a String value to a variable.

State of Memory

str 2036

We are assuming 4
bytes to a row. Each
character requires 2
bytes, so each row can
hold up to two charac-
ters.

2036 J a

r

k a

t

a

2040

2044

2048

This value 2036 is the
address where the
string data are actual-
ly stored.

These are ad-
dresses of memo-
ry locations.

 1020

str is a variable of
type String , so its
content is an ad-
dress.

str 1020

FIGURE 8.6 Hypothetical memory management scheme for storing a
String value.

J a

r

k a

t

a

McGraw-Hill Publishing
© All Rights Reserved 1999

5 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
str I r

i a

n

J

1020

<space>

1036 134590

This memory location al-
ready contains a value, so
we don’t have enough space
to store the last three charac-
ters.

a y a

FIGURE 8.7 Memory shortage problem with the hypothetical memory
management scheme.

1024

1028

1032

1040

str

String

Jakarta

FIGURE 8.8 A preferred style of diagram for representing memory
allocation for a reference data type.

str

String

Jakarta Object Diagram
Representation
McGraw-Hill Publishing
© All Rights Reserved 1999

6 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
String word1, word2;

word1 = new String("Java");

word2 = word1;

State of Memory

word1

word2

A

FIGURE 8.9 Effect of assignment statements on reference data type
String .

String word1, word2;

word1 = new String("Java");

word2 = word1;

B

String word1, word2;

word1 = new String("Java");

word2 = word1;C

word1

word2

word1

word2

after A is executed

after B is executed

after C is executed

Both word1 and word2 are allocat-
ed memory, but no actual objects
are created yet, so both are null .

One String object is created and
assigned to word1 ; that is, word1
points to the object.

Content of word1 (which is a refer-
ence to the String object) is as-
signed to word2 , making word2
also point to the same String object.

String

Java

String

Java

Both word1 and
word2 are allo-
cated memory,
but no actual ob-
jects are created
yet, so both are
null .
McGraw-Hill Publishing
© All Rights Reserved 1999

7 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 8.10 The difference between the equality test and the equals
method.

word1 == word2 is true

word1.equals(word2) is true
String

Java

word1

word2

Note: If x == y is true , then x.equals(y) is
also true . The reverse is not always true.

word1 == word2 is false

word1.equals(word2) is true

String

Javaword1

word2 String

Java

word1 == word2 is false

word1.equals(word2) is false

String

Javaword1

word2 String

Bali

Case C: Referring to different objects having different string values.

Case B : Referring to different objects having identical string values.

Case A : Referring to the same object.
McGraw-Hill Publishing
© All Rights Reserved 1999

8 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
public void myMethod(StringBuffe r
 strBuf)

{

strBuf.setCharAt(0, 'Y');

}

FIGURE 8.11 How the memory space for parameters are allocated and
deallocated.

tester.myMethod(word);

State of Memory

B

 values are copied at B

CD

The value of the argu-
ment, which is an address,
is copied to the parameter.

The content of the object
referenced by the parame-
ter is modified.

The parameter is erased.
The argument points to the
same (now modified) object.

 at A before myMethod

The local variable does not
exist before the method ex-
ecution.

A

Execution Flow

word

Java

word

Java

strBuf

word

Yava

strBuf

after C is executed

word

Yava

 at D after myMethod
McGraw-Hill Publishing
© All Rights Reserved 1999

9 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
public void myMethod(StringBuffer
 strBuf)
{

 StringBuffer localCopy
= new StringBuffer(

 strBuf.toString());

localCopy.setCharAt(0, 'Y');
}

FIGURE 8.12 How a local copy of the passed object is created and
manipulated. The original object will not change.

tester.myMethod(word);

State of Memory

B

 values are copied at B

D

E

A local copy is created
and manipulated. Original
object will not be affected.

 at A before myMethod

A

Execution Flow

word

Java

word

Java

strBuf

word

Java

 at
E after myMethod

word

Java

strBuf

after C is executed

C

Java

word

Java

strBuf

after D is executed

Yava

local-
Copy

local-
Copy
McGraw-Hill Publishing
© All Rights Reserved 1999

10 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
public String sayHi(String
 name)
{

String greeting;

greeting = "Hi, " + name;

return greeting;
}

FIGURE 8.13 How the reference data type is returned from the sayHI
method.

hiMsg = tester.sayHi(name);

State of Memory

B

 the address is copied at B

C
D

A

Execution Flow

namename

Bill

hiMsg

name

Bill

hiMsg

after C is executed

Hi, Bill
greeting

name
Bill

hiMsg

Hi, Bill

 at D after sayHi

name

Bill

hiMsg

 at A before sayHi

The content of greeting is re-
turned and assigned to hiMsg .

(sayHi)

name
(sayHi)
McGraw-Hill Publishing
© All Rights Reserved 1999

11 of 12 8 Characters and Strings

A n I n t r o d u c t i o n t o O O P w i t h J a v a

CH
FIGURE 8.14 The object diagram for the EggyPeggy program. Note:
String and StringBuffer objects are not shown here.

EggyPeggyMain

main

OutputBox

outputBox
InputBox

inputBox

EggyPeggy

eggyPeggy

start

MainWindow

mainWindow

ResponseBox

responseBox
McGraw-Hill Publishing
© All Rights Reserved 1999

12 of 12 8 Characters and Strings

	TABLE 8.1 ASCII Codes.

