
1

Data Structures

Arrays and Structs

Chapter 9

2

9.1 The Array Data Type

� Array elements have a common name

– The array as a whole is referenced through the

common name

� Array elements are of the same type — the

base type

� Individual elements of the array are

referenced by sub_scripting the group name

3

Arrays

� Analogies

– Egg carton

– Apartments

– Cassette carrier

� More terminology

– Ability to refer to a particular element

• Indexing or sub_scripting

– Ability to look inside an element

• Accessing value
4

Arrays

� Language restrictions

– Subscripts are denoted as expressions

within brackets: []

– Base type can be any fundamental,

library-defined, or programmer -defined

type

5

Arrays

– The index type is integer and the index

range must be

0 ... n-1

• where n is a programmer-defined constant

expression.

– Parameter passing style

• Always call by reference (no indication

necessary)

6

Array Declaration

Type of

values in

list

BaseType Id [SizeExp] ;

Name

of list

Bracketed

constant

expression

indicating

number of

elements in

list

2

7

Sample Declarations

� Suppose

const int N = 20;

const int M = 40;

const int MaxStringSize = 80;

const int MaxListSize = 1000;

8

Sample Declarations

� Then the following are all correct array

declarations.

int A[10];

char B[MaxStringSize];

float C[M*N];

int Values[MaxListSize];

Rational D[N-15];

9

Subscripting

� Suppose

int A[10]; // array of 10 ints

� To access an individual element we must

apply a subscript to array name A

– A subscript is a bracketed expression

• The expression in the brackets is known as the index

– First element of A has index 0

A[0]

10

Subscripting

– Second element of A has index 1, and so on

A[1]

– Last element has an index one less than the size

of the array

A[9]

� Incorrect indexing is a common error

11

Array Elements

� Suppose

int A[10]; // array of 10 uninitialized ints

� To access an individual element we must

apply a subscript to array name A

-- -- ----A
A[4]A[5]A[6]A[3]A[0] A[2] A[8]A[9]A[7]A[1]

-- -- ---- -- --

12

Array Element Manipulation

� Given the following:

int i = 7, j = 2, k = 4;

A[0] = 1;

A[i] = 5;

A[j] = A[i] + 3;

A[j+1] = A[i] + A[0];

A[A[j]] = 12;

3

13

Array Element Manipulation

cin >> A[k]; // where the next input value is 3

-- 8 61A
A[4]A[5]A[6]A[3]A[0] A[2] A[8]A[9]A[7]A[1]

-- -- 53 --12

14

Inputting Into An Array

int A[MaxListSize];

int n = 0;

int CurrentInput;

while((n < MaxListSize) && (cin >>
CurrentInput))

{

A[n] = CurrentInput;

++n;

}

15

Displaying An Array

// List A of n elements has

// already been set

for (int i = 0; i < n; ++i)

{

cout << A[i] << " ";

}

cout << endl;

16

Remember

� Arrays are always passed by reference

– Artifact of C

� Can use const if array elements are not to be

modified

� You do not need to include the array size

within the brackets when defining an array

parameter

� Initialize array with 0 or some other known

value

17

9.2 Sequential Access to

Array Elements

� Random Access

– Access elements is random order

� Sequential Access

– Process elements in sequential order starting

with the first

– ShowDiff.cpp a program that looks at values

and calculates a difference between the element

and the average

18

ShowDiff.cpp

#include <iostream>

#include <iomanip>

using namespace std;

int main()

{

const int MAX_ITEMS = 8;

float x[MAX_ITEMS];

float average;

float sum;

4

19

ShowDiff.cpp

// Enter the data.

cout << "Enter " << MAX_ITEMS << " numbers: ";

for (int i = 0; i < MAX_ITEMS; i++)

cin >> x[i];

// Compute the average value.

sum = 0.0;

for (int i = 0; i < MAX_ITEMS; i++)

sum += x[i];

average = sum / MAX_ITEMS;

20

ShowDiff.cpp

cout << "The average value is " <<

average << endl << endl;

// Display the difference between each item

// and the average.

cout << "Table of differences between x[i]

and the average." << endl;

cout << setw (4) << "i" << setw (8) << "x[i]"

<< setw (14) << "difference" << endl;

21

ShowDiff.cpp

for (int i = 0; i < MAX_ITEMS; i++)

cout << setw (4) << i << setw (8) << x[i]

<< setw (14) << (x[i] - average) <<

endl;

return 0;

}

22

ShowDiff.cpp

Program Output
Enter 8 numbers: 16 12 6 8 2.5 12 14 -54.5

The average value is 2.0

Table of differences between x[i] and the average

I x[I] difference

0 16.0 14.0

1 12.0 10.0

2 6.0 4.0

3 8.0 6.0

etc etc

23

9.3 Array Arguments

� Use <, ==, >, +, - to test and modify array

elements

� At times it might benefit you to pass an

entire array to a function

� Can pass array elements to functions

– actual function call

exchange (s[3], s[5]);

� Examples follow
24

Exchange.cpp

// FILE: Exchange.cpp

// Exchanges two type float values

void exchange (float& a1, float& a2)

{

float temp;

temp = a1;

a1 = a2;

a2 = temp;

}

5

25

Arrays as Function Arguments

� Remember arrays are pass by reference

– Passing the array address

� Remember these points when passing arrays

to functions

– The formal array argument in a function is not

itself an array but rather is a name that

represents an actual array argument. Therefore

in the function definition, you need only inform

the compiler with [] that the actual argument

will be an array
26

Arrays as Function Arguments

� Remember these points when passing arrays

to functions

– Formal array arguments that are not to be

altered by a function should be specified using

the reserved word const. When this

specification is used, any attempt to alter the

contents will cause the compiler generate an

error message

� SameArray.cpp example

27

SameArray.cpp

// FILE: SameArray.cpp

// COMPARES TWO FLOAT ARRAYS FOR EQUALITY BY

// COMPARING CORRESPONDING ELEMENTS

// Pre: a[i] and b[i] (0 <= i <= size-1) are

// assigned values.

// Post: Returns true if a[i] == b[i] for all I

// in range 0 through size - 1; otherwise,

// returns false.

bool sameArray (float a[], float b[],

const int size)

28

SameArray.cpp

{

// Local data ...

int i;

i = 0;

while ((i < size-1) && (a[i] == b[i]))

i++;

return (a[i] == b[i]);

}

29

AddArray.cpp

// Array elements with subscripts ranging from

// 0 to size-1 are summed element by element.

// Pre: a[i] and b[i] are defined

// (0 <= i <= size-1

// Post: c[i] = a[i] + b[i] (0 <= i <= size-1)

void addArray (int size, const float a[],

const float b[], float c[])

{

// Add corresponding elements of a and b and
store in c.

for (int i = 0; i < size; i++)

c[i] = a[i] + b[i];

} // end addArray 30

9.4 Reading Part of an Array

� Sometimes it is difficult to know how many

elements will be in an array

� Scores example

– 150 students

– 200 students

� Always allocate enough space at compile

time

� Remember to start with index [0]

6

31

ReadScoresFile.cpp

// File: ReadScoresFile.cpp

// Reads an array of exam scores for a lecture

// section of up to max_size students.

#include <iostream>

#include <fstream>

using namespace std;

#define inFile "Scores.txt"

32

ReadScoresFile.cpp

void readScoresFile (ifstream& ins,int scores[],

const int MAX_SIZE, int& sectionSize);

int main()

{

int scores[100];

int size;

ifstream ins;

ins.open(inFile);

33

ReadScoresFile.cpp

if (ins.fail())

{

cout << "Error" << endl;

return 1;

}

readScoresFile(ins, scores, 5, size);

for (int i = 0; i < size; i++)

cout << scores[i] << " " ;

cout << endl;

return 0;

} 34

ReadScoresFile.cpp

// File: ReadScoresFile.cpp

// Reads an array of exam scores for a lecture

// section of up to MAX_SIZE students from a

// file.

// Pre: None

// Post: The data values are read from a file

// and stored in array scores.

// The number of values read is stored in

// sectionSize.(0 <= sectionSize < MAX_SIZE).

35

ReadScoresFile.cpp

void readScoresFile (ifstream& ins, int scores[],

const int MAX_SIZE, int& sectionSize)

{

// Local data ...

int tempScore;

// Read each array element until done.

sectionSize = 0;

ins >> tempScore;

while (!ins.eof() && (sectionSize < MAX_SIZE))

{

scores[sectionSize] = tempScore;

36

ReadScoresFile.cpp

sectionSize++;

ins >> tempScore;

} // end while

// End of file reached or array is filled.

if (!ins.eof())

{

cout << "Array is filled!" << endl;

cout << tempScore << " not stored" << endl;

}

}

7

37

9.5 Searching and Sorting

Arrays

� Look at 2 common array problems

– Searching

– Sorting

� How do we go about finding the smallest

number in an array?

– Assume 1st is smallest and save its position

– Look for one smaller

– If you locate one smaller save its position

38

ArrayOperations.cpp

// File: arrayOperations.cpp

// Finds the subscript of the smallest value in a

// subarray.

// Returns the subscript of the smallest value

// in the subarray consisting of elements

// x[startindex] through x[endindex]

// Returns -1 if the subarray bounds are invalid.

// Pre: The subarray is defined and 0 <=

// startIndex <= endIndex.

// Post: x[minIndex] is the smallest value in

// the array.

39

ArrayOperations.cpp

int findIndexOfMin(const float x[],

int startIndex, int endIndex)

{

// Local data ...

int minIndex;

int i;

// Validate subarray bounds

if ((startIndex < 0) || (startIndex >

endIndex))

{

40

ArrayOperations.cpp

cerr << "Error in subarray bounds" << endl;

return -1;

}

// Assume the first element of subarray is

// smallest and check the rest.

// minIndex will contain subscript of smallest

// examined so far.

minIndex = startIndex;

for (i = startIndex + 1; i <= endIndex; i++)

if (x[i] < x[minIndex])

minIndex = i;

41

ArrayOperations.cpp

// All elements are examined and minIndex is

// the index of the smallest element.

return minIndex;

} // end findIndexOfMin

42

Strings and Arrays of

Characters

� String object uses an array whose elements

are type char

� First position of a string object is 0

– example string find function ret of position 0

� Can use the find function to locate or search

an array

� We will study some various search

functions

8

43

Linear Search

� The idea of a linear search is to walk

through the entire until a target value is

located

� If the target is not located some type of

indicator needs to be returned

44

ArrayOperations.cpp

// Searches an integer array for a given element

// (the target)

// Array elements ranging from 0 to size - 1 are

// searched for an element equal to target.

// Pre: The target and array are defined.

// Post: Returns the subscript of target if

// found; otherwise, returns -1.

int linSearch (const int items[], int target,

int size)

{

for (int i = 0, i < size, i++)

45

ArrayOperations.cpp

if (items[next] == target)

return next;

// All elements were tested without success.

return -1;

} // end linSearch

46

Sorting in Ascending Order

Selection Sort

� Idea of the selection sort is to locate the

smallest value in the array

� Then switch positions of this value and that

in position [0]

� We then increment the index and look again

for the next smallest value and swap

� Continue until sorted

47

ArrayOperations.cpp

// Sorts an array (ascending order) using

// selection sort algorithm

// Uses exchange and findIndexOfMin

// Sorts the data in array items (items[0]

// through items[n-1]).

// Pre: items is defined and n <= declared size

// of actual argument array.

// Post: The values in items[0] through items

// [n-1] are in increasing order.

48

ArrayOperations.cpp

void selSort(int items[], int n)

{

// Local data ...

int minSub;

for (int i = 0; i < n-1; i++)

{

// Find index of smallest element in

// unsorted section of items.

minSub = findIndexOfMin(items, i, n-1);

9

49

ArrayOperations.cpp

// Exchange items at position minSub and i

exchange(items[minSub], items[i]);

}

}

50

9.7 Analyzing Algorithms

Big O Notation

� How to compare efficiency of various

algorithms

� A mathematical measuring stick to do

quantitative analysis on algorithms

� Typically sorting and searching

� Based on looping constructs and placed into

categories based on their efficiency

� Most algorithms have BigO published

51

Analyzing Algorithms

Big O Notation

� Run time efficiency is in direct proportion

to the number of elementary machine

operations

– Compares

– Exchanges

52

Analyzing Algorithms

Big O Notation

� Two independent loops

– Sum of the loops is efficiency

– n/2 + n^2 is Big O(N^2)

Example:

for (k=1; k<=n/2; ++k)

{

}

for (j=1; j<=n*n; ++j)

{

}

53

Analyzing Algorithms

Big O Notation

� Two nested loops

– Product of the loops is efficiency

– n/2 * n^2 = n^3/2 is Big O(N^3)

Example:

for (k=1; k<=n/2; ++k)

{

for (j=1; j<=n*n; ++j)

{

}

} 54

9.7 The Struct Data Type

� struct used to store related data items

� Individual components of the struct are

called its members

� Each member can contain different types of

data

� Employee example

10

55

Struct Employee

// Definition of struct employee

struct employee

{

string id;

string name;

char gender;

int numDepend;

money rate;

money totWages;

};

56

Accessing Members of a

struct

� Members are accessed using the member

access operator, a period

� For struct variable s and member variable m

to access m you would use the following:

– cout << s.m << endl;

� Can use all C++ operators and operations on

structs

57

Accessing Members of a

struct

organist.id = 1234;

organist.name = “Noel Goddard”;

organist.gender = ‘F’;

organist.numDepend = 0;

organist.rate = 6.00;

organist.totWages += organist.rate * 40.0;

58

9.8 Structs as Operands and

Arguments

� How to do arithmetic and other operations

using structs

� Process entire struct using programmer

defined functions

� Often better to pass an entire structure

rather than individual elements

� struct copies

organist = janitor;

59

Passing struct as an Argument

� Grading program example

� Keep track of students grades

� Prior to our learning structs we needed to

store each item into a single variable

� Group all related student items together

� Pass struct by const reference if you do not

want changes made

60

ExamStat.h

// FILE: ExamStat.h

struct examStats

{

string stuName;

int scores[3];

float average;

char grade;

};

11

61

PrintStats.cpp

// File: printStats.cpp

// Prints the exam statistics

// Pre: The members of the struct variable

// stuExams are assigned values.

// Post: Each member of stuExams is displayed.

void printStats(examStats stuExams)

{

cout << "Exam scores for " <<

stuExams.stuName << ": "

62

PrintStats.cpp

cout << stuExams.scores[0] << ' ' <<

stuExams.scores[1]<< ' ' <<

stuExams.scores[2] << endl;

cout << "Average score: " <<

stuExams.average << endl;

cout << "Letter grade : " <<

stuExams.grade << endl;

}

63

ReadEmp.cpp

// File: ReadEmp.cpp

// Reads one employee record into oneemployee

#include <string>

#include <iostream>

// Pre: None

// Post: Data are read into struct oneEmployee

void readEmployee(employee& oneEmployee)

{

cout << "Enter a name terminated with the

symbol # : ";

64

ReadEmp.cpp

getline(cin, oneEmployee.name, '#');

cout << "Enter an id number: ";

cin >> oneEmployee.id;

cout << "Enter gender (F or M): ";

cin >> oneEmployee.gender;

cout << "Enter number of dependents: ";

cin >> oneEmployee.numDepend;

cout << "Enter hourly rate: ";

cin >> oneEmployee.rate;

}

65

9.9 Common Programming

Errors

� Watch non int subscripts (ASCII value)

� Enumerated types can be used

� Out of range errors

– C++ no range error checking

� Lack of subscript to gain access

� Subscript reference to non-array variable

� Type mixing when using with functions

� Initialization of arrays
66

Common Programming Errors

� No prefix to reference a struct member

� Incorrect prefix reference to a struct

member

� Missing ; following definition of struct

� Initialization of struct members

