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Abstract

Variable elimination (VE), a central component of Bayesian network inference, starts
and ends with clear structure and semantics, yet all intermediate distributions, whether
normalized or unnormalized, are denoted as potentials. In this paper, a condition is given
stating when intermediate distributions are defined with respect to the joint distribution.
Theoretical and practical advantages of these new semantics are given.

1 Introduction

A Bayesian network (BN) (Pearl, 1988; Cowell
et al., 1999; Jensen and Nielsen, 2007; Kjaerulff
and Madsen, 2008) consists of a directed acyclic
graph (DAG) and a corresponding set of condi-
tional probability tables (CPTs). The indepen-
dencies encoded in a DAG on variable set U in-
dicate that the product of CPTs is a joint prob-
ability distribution p(U). BN reasoning centres
around eliminating variables. Variable elimina-
tion (VE) (Zhang and Poole, 1996), an inference
algorithm for answering a query p(X|E = e),
repeatedly calls the sum-out (SO) algorithm to
remove variables. SO removes a variable v as
a two-step process. First, the product of all
distributions involving v is taken. Second, v is
marginalized out from the obtained product.

Koller and Friedman (2009) state that it is
interesting to consider the semantics of the dis-
tribution output by SO when evidence is not
considered. They mention that SO outputs
a CPT ¢(X|Y), but not necessarily with re-
spect to p(U). Butz et al. (2010) have shown a
stronger result, namely, that every multiplica-
tion and every addition operation during VE’s
execution yields a CPT, albeit perhaps not with
respect to p(U).

In this paper, we address the semantics of

VE’s intermediate CPTs by providing a con-
dition stipulating when they are defined with
respect to p(U). Roughly speaking, ¢(X|Y) is
p(X|Y') provided there exists a topological or-
dering of all variables in the BN in which those
variables used to build ¢(X|Y) appear consec-
utively. In such cases, we say an intermedi-
ate CPT ¢(X|Y) has a “p-label” and denote
#(X1]Y) as p(X|Y). It is important to observe
that ¢(X|Y) can be normalized or unnormal-
ized, as well as involve evidence variables or not.
It is noted that there are two kinds of paths
that violate our condition, which, respectively,
have temporary and permanent influences on
SO. This work helps reveal structure and se-
mantics in probabilistic reasoning with BNs,
a worthy goal according to Pearl (1988) and
Shafer (1996). We will also mention a practical
advantage of this new semantic knowledge us-
ing the latest optimization techniques that are
being applied in join tree propagation.

This paper is organized as follows. Section
2 contains background knowledge. The CPT
structure of SO is discussed in Section 3. In
Section 4, we establish semantics of VE’s CPT
structure. We extend the semantics to involve
evidence in Section 5. Section 6 contains the-
oretical and practical advantages. Conclusions
are given in Section 7.



2 Background Knowledge

The following discussion draws mainly from
Shafer (1996) and Olmsted (1983). Let U =
{v1,v9,...,v,} be a finite set of variables. Each
v; has a finite domain, denoted dom(v;). For
a subset X = {v;,...,v;} of U, dom(X) de-
notes the Cartesian product of the domains of
the individual variables in X. Each element
x € dom(X) is called a configuration of X.

A potential on dom(X) is a function 1 such
that ¢ (x) > 0 for each = € dom(X), and at least
one 1 (x) is positive. A joint probability distri-
bution on dom(U) is a potential p on dom(U)
that sums to 1. A potential that sums to 1 is
normalized; otherwise, it is unnormalized. We
may write a set {v1, vy, ..., vk} as vive - - - v and
use XY to denote X UY. A conditional prob-
ability table (CPT) for X given disjoint Y, de-
noted ¢(X|Y), is a potential on XY, satisfying
the following condition: for each configuration
y € dom(Y), ZmEdom(X) pX=z|Y=y) =1
In writing ¢(X|Y) with X and Y not disjoint,
we always means ¢(X|Y — X), and only config-
urations with non-zero probability are stored.

A discrete Bayesian network (BN) (Pearl,
1988) on U = {v1,v2,...,v,} is a pair (B,C).
B is a DAG with vertex set U. C' is a set of
CPTs {p(v;|P;) | i = 1,2,...,n}, where P; de-
notes the parents (see below) of variable v; € B.

A path from v; to w, is a sequence
V1,02, ..., U, with arcs (v, vi41),i=1,...,n—1
in B. With respect to a variable v;, we define
four sets: (i) the ancestors of v;, denoted A(v;),
are those variables having a path to v;; (ii) the
parents of v; are those variables v; such that
arc (vj,v;) is in Bj; (iii) the descendants of v;,
denoted D(v;), are those variables to which v;
has a path; and, (iv) the children of v; are those
variables v; such that arc (v;,v;) is in B. The
ancestors of a set X of variables are defined as
A(X) = (UpexA(vi)) — X. D(X) is similarly
defined. A topological ordering is an ordering
=< of the variables in a BN B so that for every
arc (v;,v;) in B, v; < vj. Initial segments of
the ordering produce marginals of p(U). A set
W of variables in a DAG is an initial segment
if the parents of each v; in W are also in W.

Algorithm 1, called sum-out (SO), eliminates
a single variable v from a set ® of potentials,
and returns the resulting set of potentials. The
algorithm collect-relevant simply returns those
potentials in ® involving variable v.

Algorithm 1 sum-out(v,®)

begin

¥ = collect-relevant(v,P)

1) = the product of all potentials in ¥
T =2

Return (& — ¥) U {7}

end

Algorithm 2, called wvariable elimination
(VE), computes p(X | E = e) from a BN on
U. VE calls SO to eliminate variables one by
one. More specifically, in Algorithm 2, & is
the set of CPTs in a BN, X is a list of query
variables, F is a list of observed variables, e is
the corresponding list of observed values, and o
is an elimination ordering for variables U — X E.

Algorithm 2 VE(®, X, E, e, 0)
begin
Set E = e in all appropriate CPTs of ®
While o is not empty
Remove the first variable v from o
® = sum-out(v, P)
p(X, E = e) = the product of all ¢ € &
pE=c) = Yxp(X,E=c)
Return p(X,E =e)/p(FE =¢)
end

3 The CPT Structure of sum-out

Observe that VE starts and ends with clear
structure and semantics, yet all intermediate
distributions, whether normalized or unnormal-
ized, are denoted as potentials. In their very
comprehensive discussion, Koller and Fried-
man (2009) state that it is interesting to con-
sider the semantics of the distribution con-
structed by summing out a variable from a BN
not involving observed evidence. They point
out that SO’s marginalization step produces a
CPT, but not necessarily with respect to the
joint probability distribution p(U).



Example 1. SO eliminates variable b from the
BN in Figure 1 as:

o(c, ela,d) Zp bla) - p(c|b) -

Thus, after marginalization, SO outputs a CPT.

p(efb,d). (1)

Figure 1: A Bayesian network.

Butz et al. (2010) have shown a stronger re-
sult, namely, every multiplication and every ad-
dition operation during VE’s execution yields a
CPT, albeit perhaps not with respect to p(U).

Example 2. Each operation of (1) gives a CPT:
Zp bla) - p(c|d) - p(e|b, d)

= Zqﬁ (b, c|a)
= Zqﬁ b, c,ela,d) (3)
b

= qb(c, 6’(1, d)

plelb, d) (2)

Note that Shafer (1996) gives a condition un-
der which each successive product of a sequence
of CPTs always yields another CPT. In particu-
lar, for the case when multiplying just two CPT's
d(X1]Y1) and ¢(X2|Y2), it is stated that

P(X1X2|Y1Ya) = o(X1|V1) - o(X2|Y2), (4)

provided that Xo is disjoint from X;Y7. The
next example demonstrates, however, that (4)
does not cover all possible cases encountered
when applying SO on a BN.

Example 3. Consider eliminating variable ¢
from the following BN:

p(a) - p(b) - p(c) - p(dla, b, c) - p(e|c, d).

By Algorithm 1, we obtain
Zp

The optimal multiplication ordering, assuming
binary variables and positive probabilities, is

> (p(c) - plele,d)) - p

C

p(d|a, b, c) - p(e|e,d).

(dla,b,c).

By (4), p(c) - p

Zqﬁ c,eld) -

As (4) no longer applies, the product of the two
CPTs in (5) must be denoted as a potential:

> Wlabye.d,e).

(ele, d) is ¢(c, eld), giving

p(d|a, b, c). (5)

While (Butz et al., 2010) reveals the CPT
structure of ¢(a,b,c,d,e) as ¢(c,d,ela,b), the
remaining unanswered question is semantic. Is
o(c,d, e|a,b) equal to p(c,d,ela,b)?

4 Semantics Without Evidence

We first consider eliminating variables without
observed evidence. It can easily be shown that
SO’s marginalization operation will always yield
a CPT with the same kind of label as the CPT
being marginalized. Thus, we focus on the se-
mantics of multiplication.

Theorem 1. Given a BN B on U and X CU.
Then

p(X]Y) =

11 p(wilPy),

v;€EX

if there is a topological ordering < of B in which
the variables in X appear consecutively, where
Y = (UpexP;) — X.

Proof. Suppose there exists a topological order-
ing < of the variables in B in which the variables
in X appear consecutively. Let W be the set of
all variables appearing in < before any variable
in X. By (Shafer, 1996), the variables in W and
WX are both initial segments, meaning that

H p(vw|Pw) (6)

vwEW



and

I p(vwlPw)

v EW

: H p(vx’Px)' (7>

v €X

By substitution of (6) into (7),

p(WX) = W) : H p(vw|Px)'
v €X
By (Butz et al., 2010),
pWX) = p(W)- ¢(X]Y). (8)

According to <, the variables Y must be con-
tained in W, by (Shafer, 1996). Let V =W -Y,
so W = VY. Then (8) can be rewritten as

p(VYX) = p(VY)-¢(X]Y).

Marginalizing away V' yields

p(YX) = p(Y)-o(X]Y).

By rearrangement, we obtain our desired result

pX[Y) = o(X[Y).

O]

Example 4. By Theorem 1, ¢(b,cla) in (2) is
p(b, c|a), since b and ¢ can appear consecutively
in a topological order < of B in Figure 1. How-
ever, ¢(b,c,ela,d) in (3) is not guaranteed to
be p(b, ¢, e|a, d), since every topological order <
has d between c and e, i.e., c < d < e.

Our topological condition is sufficient but not
necessary to ensure CPTs with p-labels.

Example 5. Consider eliminating b from the
BN in Figure 1. Suppose the CPTs for a,...,e
are defined such that their marginal has only
one configuration with a non-zero probability,
say, p(a =0,b=0,c=0,d =0,e =0) is 1. In
this extreme case, it can be verified that

= p(bla) - p(c|b) -

To ensure p-label CPTs for any BN instance
B, we extend SO as sum-out-as-p (SOP), which
calls collect-topological (CT) to collect any CPT
needed to satisfy our topological ordering re-
quirement in B.

p(b, c,ela,d) p(elb, d).

Algorithm 3 sum-out-as-p(v,®)

begin

U = collect-relevant (v, ®)

© = collect-topological (¥, ®)

p(X|Y) is the product of all CPTs in ¥ and ©
p(X — oY) =5, p(X|)
Return (¢ — ¥ — O) U {p(X
end

—0lY)}

Algorithm 4 collect-topological(¥,®)

begin

X is the union of all X; where p(X;|Y;) € ¥
Let Z be A(X) N D(X)

Let Q be those p(X;|Y;) in @ with X; N Z # 0
Return 2

end

Example 6. Consider how SOP eliminates h,
b and f from Figure 1. For h, ¥ = {p(h|d,g),
p(i|h), p(§lh)}. CT returns Q = 0, as X = hij,
7 = A(hij) N D(hij) = 0. In SOP, © = 0, so

Zp (hld, g) - p(ilR) - p(j|h).

For b, U = {p(bla), p(c|b), p(e|b,d)} and, as
Z = A(bce) N D(bce) = d, © = {p(d|c)}. Thus,
Zp bla) - p(c|b) - p(d]c) - p(e|b, d).
For f, W = {p(f), p(gle, f), p(|f, k,%,j)} and,
since Z = A(fgl) N D(fgl) = hijk, we have
© = {p(i,7ld,g), p(klg)}. Therefore,

Zp p(gle, f) p(i, j|d, g) p(klg) p(I|f, k.3, )

(9717.77]{:7[ |d’€)'

p(i,jld, g) =

p(e,d,ela) =

Observe that every elimination in Example 6
yielded a p-label CPT. Also note that Z in the
collect-topological algorithm can be quickly ob-
tained from the transitive closure of a DAG,
which can be found in O(n?) time (Cormen et
al., 2009). It must be made clear that we are
not advocating that SOP be considered as a new
approach to inference. Instead, SOP can shed
insight into the semantics of SO’s intermediate
CPTs. SO is ensured to yield a CPT with a p-
label, if it collects the same CPTs as SOP does.



Example 7. Recall Example 6. When elimi-
nating variable h, SO will yield a p-label, since
SO and SOP collect the same CPTs. On the
contrary, to eliminate variable b, SO can com-
pute the following ¢-label:

p(bla) - p(c|b) -

A p-label is not necessarily obtained here due to
the fact that SOP also collects © = {p(d|c)}.

More generally, every product taken in SO
of two CPTs ¢(X;|Y1) and ¢(X2|Y2) will be
p(X1X2|Y1Y2), provided the topological require-
ment is met. Let us focus on eliminating a sin-
gle variable from a BN. There are two kinds of
paths warranting attention. The first only in-
volves children of the variable being eliminated.
When eliminating a variable v from a BN, the
CPTs of v’s children must be multiplied in an
order consistent with some topological order-
ing of the DAG. The following example illus-
trates how this condition has a temporary in-
fluence within SO, meaning that intermediate
CPTs can alternate between ¢- and p-labels.

(b, c,ela,d) = p(elb, d).

Example 8. Consider the elimination of vari-
able b from the BN in Figure 2:

Zp() plelb,d) - p(d|a,b) - -- (9)
= Z¢be!d p(dla.b) -plglb. f)-- (10)
= Zp(b» d,ela) - p(glb, f) - p(flb,c,e)---(11)
= zbﬁ(b’d’e,gla,f)-p(flbjc,e)-~- (12)
= zbjp(b,d,e,f,gya,c)-p(¢|b,g,h>... (13)
= zbj¢(b,d,e,f,g,¢ya,c,h).p(j|b,¢) (14)
= zbjsb(b,d,e,f,g,i,j\a’c,h) (15)
= gbb(d,e,f,g,i,j|a,c,h). (16)

Example 8 demonstrates how the intermedi-
ate CPTs can alternate between having and not
having p-labels. A ¢-label can be obtained when
multiplying the CPTs for b and e in (10), since

AN

—»e—>f—>g—> l—»]

Figure 2: Illustrating the alternating pattern of
intermediate CPTs with p-labels in Example 8.

there is a path from b to e going through d (so
b < d < e). Since the CPT p(d|a,b) for d has
been collected by SO, a p-label can be subse-
quently re-obtained, as shown in (11). Similar
remarks hold for multiplying this product with
the CPT for g before that for f, as shown in
(12) - (13).

The second kind of path, however, has a per-
manent influence on the semantics of SO’s in-
termediate CPTs; it involves variables that are
not children of the variable being eliminated.
Recall Example 8 where variable b is being elim-
inated and consider (13) - (14). Once the CPT
p(ilb, g, h) is multiplied, all CPTs subsequently
constructed by SO during the elimination of b
can have a ¢-label as in (14) - (16). The reason
is that there is a path from b to ¢ going through
h (so b < g < h <1i). However, the CPT p(h|g)
is not collected by SO as p(h|g) does not involve
b. Hence, the only way to ensure a subsequent
p-label is to wait for p(h|g) to be multiplied dur-
ing a different call to SO, say to eliminate h.

Theorem 2. Given a BN B on U, let ¢(X|Y)
be any CPT that VE computes by multiplica-
tion. Then ¢(X|Y) is p(X|Y), if there is a
topological ordering < of B in which the vari-
ables in DX appear consecutively, where D are
those variables that were eliminated by SO in

building ¢(X|Y).

The proof of Theorem 2 is similar to that
of Theorem 1 and will be shown in a separate
manuscript.



Example 9. Continuing from Example 8, con-
sider the elimination of variable h.

zp(h‘g) ’ gb(dv €, f,g,z',j|a,c, h)
h

- Zp(d,e,f,g,h,i,ﬂa,c) (17)
h

= p(d7e’f’g7i7j‘a’7c)‘

In Example 9, a p-label is obtained in (17)
as there exists a topological ordering < of
the BN in Figure 2 where the variables in
b,d,e, f,g,h,i,j appear consecutively.

5 Semantics With Evidence

Suppose we observe the values e of a set E of
variables contained in U. Before a disjoint set D
also contained in U is eliminated from the BN,
those CPTs containing evidence variables are
modified by multiplying them with evidence po-
tentials. An evidence potential, denoted 1(FE),
assigns probability 1 to the single configuration
e of E and probability 0 to all other configu-
rations of E. If a BN CPT p(v;|P;) contains at
least one evidence variable, then 1; denotes 1(E)
restricted to those evidence variables appearing
in p(v;| P;). Hence, the product p(v;| P;)-1; keeps
the configurations agreeing with £ = e while
deleting the rest. By 1((}), we denote 1.
Intermediate potentials, constructed during
inference by VE, can always have their condi-
tional probabilities (Theorem 3) and semantics
(Corollary 1) identified.
Theorem 3. Given a BN B and evidence E =
e, every VE distribution constructed by multi-
plication can be expressed as the product of a
CPT and an evidence potential.

Proof. Let the constructed distribution be ¢; -
¢2. We can always equivalently rewrite ¢, as
the marginalization of the product of the CPT's
and evidence potentials used to build ¢y:

> ﬁ( H p(viPy),

Dy i=1 i=j+1

(vi| P;) -

where D is the set of variables marginalized
away by SO from the product of k& CPTs in

B, and where j evidence potentials were used.

Since £ N Dy = (), we have
J J
¢1 - leZH Uz’P H pvz’P
i=1 Dy i=1 i=j+1
J k
= J]1 D IIp(vlP).
i=1 Dy i=1
Similarly, for ¢2,
m
b2 = ), H p(oilP) - 1) - 1] p(uilPy)
Do i=k+1 i=l+1
l m
= H L Z H pUZ|P H p(vz|P)
i=k+1 Dy i=k+1 i=l+1
!
= H 1; Z H p(vi| ;).
i=k+1 Dy i=k+1

Thus, the product 1 - @2 is

l m
Hl ZHP ulB) - I] 1>, TI plwilP).
=1 Dy =1

1=k+1 Do i=k+1

By SO, Dy and D; have no common variables
with the CPTs p(v;|F;), i = 1,...,k and i =
k+1,...,m, respectively. Therefore, we have:

J l
Hli' H 1; - Z Hp vi| P;) - H p(v;| P;).
i=1

i=k+1 D1Ds51=1 i=k+1
Rearranging yields

7 l m
- I v > [IewilP).

i=1 i=k+1 D1Dsi=1
Let ¢(X|Z) =TI~ p(vi| P;). Then we have
J l
My I] 1 D> o(x12).
i=1  i=k+1 DD

As DiDy; C X (Butz et al., 2010), let W =
X — D1D,. Thus, the multiplication ¢ - ¢ is

WENWZ) - 6(W|2),
where the product of the evidence potentials is
W(ENWZ). O

Corollary 1. In the proof of Theorem 3,
o(W|Z) is p(W|Z), provided there is a topo-
logical ordering < of B in which the variables
in DW appear consecutively, where D are those
variables that were eliminated to build ¢(W|Z).



6 Advantages

We stress the improvement in clarity and sug-
gest a direction of practical investigation.

Kjaerulff and Madsen (2008) suggest that in
working with probabilistic networks it is conve-
nient to denote distributions as potentials. Sim-
ilarly, Koller and Friedman (2009) would denote
the start of Example 8 as

ng s (e, b, d) - hu(d, ab) -

Observe that both the p-labels and the CPT
structure have been destroyed even before the
distributions in memory have been modified. It
is then more meaningful to keep the CPT struc-
ture and semantics highlighted in (9) - (16).

Consider evidence ¢ = 1 and h = 0 in the BN
in Figure 3, which Koller and Friedman (2009)
call non-trivial. All intermediate distributions
are denoted as potentials in the computation of
p(j | i = 1,h = 0). However, it follows from
Theorem 3 and Corollary 1 that structure and
semantics can still be identified.

i
d\g)/i\s
/i
|\J
Pl

Figure 3: The DAG of a non-trivial BN.

Example 10. Computing p(j | i =1,h =0) in
the BN of Figure 3 involves, in part,

>~ p(e)-p(dle) - p(i) - p(sli) - p(gld, ) - p(llg)
¢,d,g,s,l
p(jll,5) - p(hlg,5) - 1(i =1) - 1(h = 0).

Eliminating variables ¢ and d requires

Zp (g1d, ) - Zp ) (18)
Zp gld,i=1)-> p(c,d)
d c

(19)

= > plgld,i=1)-p(d) (20)
= ip(d,gli =1)
= p?ah':l)-
Variable g can be eliminated as:
Z (9li =1) - p(llg) - p(hlg, 5) - 1(h = 0)
Zp gli =1)-p(llg) - p(h = 0lg, )
= Zp (g,1i = 1) - p(h = 0lg, ) (21)
_ Zg:¢(g,z,h = 0li=1,5) (22)
= qﬁg(l,h = 0)i = 1,j). (23)

The remainder of the example is omitted.

FExample 10 shows that all intermediate dis-
tributions have structure and semantics, regard-
less of: the involvement of evidence potentials
(18); the side or sides of the bar on which evi-
dence appears (21), (22); marginalization oper-
ations (19); and p-labels (20) or ¢-labels (23).
Now let us turn to efficiency issues.

All previous join tree propagation algo-
rithms either exclusively apply VE or arc re-
versal (AR) (Olmsted, 1983) at all join tree
nodes (Madsen, 2010), or pick whether to apply
VE or AR at each node (Butz et al., 2009a).
A practical advantage of our new semantics is
the ability to construct messages using both VE
and AR at the same join tree node.

Example 11. Consider a join tree with
three nodes abcdefgh, fgij and fik.
The CPTs assigned to abedefgh are p(a),
p(bla), p(cld), p(dlc), pleldb,d), p(fle), p(gle),
p(hla,b,c,d,e, f,g), while fgij is provided
p(ilg) and p(j|f,g,7), and fik is given p(k|f,7)
Butz et al’s (2009b) message identification
process indicates that abcdefgh will pass p(f)
and p(g|f) to node fgij, which, in turn, will
pass p(f) and p(i|f) to fik. Madsen (2010) and
Butz et al. (2009a) would apply AR at node
abcdefgh, i.e., with some abuse of notation:

AR
>~ pla)---p(fle) - p(gle),

a,b,c,d,e

p(f)-plglf) =



AR
must be applied to remove the last variable e.
However, by examining the semantics of VE, it
can be verified that the elimination of variables
a, b, ¢ and d gives p(e). Thus, apply VE to
eliminate variables a, b, c and d, and then apply
AR to eliminate variable e:

where h is removed as a barren variable.

AR VE

> D pla)

e a,b,cd
AR VE

= > > p(b) plclp) -

e b,ecd
AR VE

= Zquce\d (dfe) -

ARVE

= ZZP(CL@) -p(fle) -

It can be verified that applying AR at abcde f gh
requires more computation than applying the
combination of VE and AR as shown above.

~p(cfb) - p(dfe) - - - plygle)

p(dlc) - p(e|b,d) - --

p(gle)

p(fle) - p(gle)

p(gle)

-p(gle).

Empirical results will be reported separately.

7 Conclusions

Pearl (1988) emphasizes that probabilistic rea-
soning is not about numbers and is instead
about the structure of reasoning. Our work here
ascribes semantics to the intermediate CPTs of
VE. This is the primary contribution of this
paper. A practical advantage of these seman-
tics was illustrated using the latest optimiza-
tion techniques employed in join tree propaga-
tion and requires further study.

Intermediate CPTs constructed by VE could
be labeled solely with p-labels, provided the la-
bel of each distribution is an expression rather
than a single term. That is, label each CPT out-
put by SO as a fraction, where the numerator is
the p-label CPT output by SOP and the denom-
inator is the factorization of “missing” CPTs in
©. Thus, whereas SO can eliminate variable b
in Example 7 as ¢(c, e|a, d), it may be semanti-
cally more meaningful to take another step and
label it p(c, d, e|a)/p(d|c).
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