
Wi-Fi-Based Indoor Positioning Using
Human-Centric Collaborative Feedback

Yan Luo∗, Yuanzhu Peter Chen†, Orland Hoeber‡
Department of Computer Science

Memorial University
St. John’s, NL, A1B 3X5, Canada

Email:{∗yanl, †yzchen, ‡hoeber}@mun.ca

Abstract—In recent years, “folksonomy”-like systems such as
Wikipedia and Delicious Social Bookmarking have achieved huge
successes. User collaboration is the defining characteristic of
such systems. For indoor positioning mechanisms, we argue
that it is also possible to incorporate collaboration in order to
improve system performance, especially for fingerprinting based
approaches. In this paper, we propose a robust and efficient model
for integrating human-centric collaborative feedback within a
baseline Wi-Fi fingerprinting-based indoor positioning system.
Experimental results show that the baseline system performance
(i.e., positioning error) is improved by collecting both positive and
negative feedback from users. Moreover, the feedback model is
robust with respect to malicious feedback, quickly self-correcting
based on subsequent helpful feedback from users.

I. INTRODUCTION

Mobility and location-awareness are two essential charac-
teristics of mobile services. After over a decade of research
and development, location-aware services have gradually pen-
etrated into real life. They assist human activities in a wide
range of applications, from productivity and goal fulfillment to
social networking and entertainment. Traditionally, location-
aware applications have been confined to outdoor environ-
ments, mostly using GPS. Relatively less research has explored
the potential applicability of similar services for indoor set-
tings. However, in large indoor environments such as airports,
libraries, or shopping centres, location awareness can increase
the quality of service provided by these facilities. The lack of
research and development on the indoor aspect of this problem
is a result of two technical challenges. First, GPS signals
cannot reach indoor receivers. Second and more importantly,
the complexity of indoor environments makes triangulation
based approaches (i.e., the approach used for GPS) much less
effective. On the other hand, such challenges provide us great
opportunities for innovative indoor positioning techniques. For
example, some early indoor positioning technologies used
infrared, laser, and/or ultrasonic range finders, yielding fairly
good system performance in field tests [1]. The disadvantages
of such an approach are its size, complexity, and cost, which
render it infeasible for mobile devices.

A number of researchers have been working on using Wi-
Fi infrastructure for indoor positioning even though it was
not specifically designed for this purpose [2]. Due to the
infeasibility of indoor triangulation, most of these systems
use a fingerprinting approach based on the Received Signal

Strength (RSS) transmitted by nearby Wi-Fi access points [2].
Typically, such an approach consists of a training phase and a
positioning phase. In the training phase, each survey position is
characterized by location-related Wi-Fi RSS properties called
Wi-Fi RSS fingerprints [3]. During the positioning phase, the
position likelihood is calculated based on the current Wi-Fi
RSS measurement. That is, the system estimates the position
by comparing the current measurement to the fingerprints in
the system to generate the most likely match. Here, fine-
grained system training is normally required to achieve high
accuracy and resolution.

Due to the large signal variance, changing infrastructure,
or insufficient measurement data, such an approach may de-
liver inaccurate and unreliable results. In these circumstances,
adding a compensation mechanism to modify the results can
improve the robustness. For some types of mobile devices
carried by people, such compensation can come in the form
of feedback from end users [4].

In this article, we propose a Wi-Fi based indoor positioning
system that includes an integrated human-centric collaborative
feedback model. In the proposed prototype, we define an
efficient and robust user feedback model, where the initial
likelihood vector calculated by the positioning system will
be compensated before being presented to the user. Further,
the user can participate in how the compensation works by
providing feedback.

The rest of this article is organized as follows. The next
section gives a short overview of Wi-Fi RSS fingerprinting
based positioning. In Section III, we describe a baseline Wi-
Fi fingerprinting framework. Next, we define our detailed user
feedback model in Section IV. The feedback model is tested
in comparison to the baseline method as reported in Section V.
This article is concluded in Section VI with discussion and an
overview of future work.

II. RELATED WORK

During the training phase of Wi-Fi fingerprinting, beacon
frames are collected from nearby access points at each survey
position. The MAC address, RSS, and timestamp are extracted
from each beacon. The collection of beacons in a single scan
by the device form a vector. Typically, multiple scans are
conducted to constitute a fingerprint for this survey position.
As such, a fingerprint database is created for future queries



in the positioning phase. However, this collection process
can be very time-consuming and laborious, especially for
future updates and maintenance. Thus, streamlining such a
training phase is very important for its commercialization.
According to Chai and Yang [5] and Lemelson et al. [6],
pre-processing fingerprints can significantly reduce the sys-
tem training costs. At the extreme, “zero-configuration” can
be achieved by only involving user updates without system
training [7]. Furthermore, commercial Wi-Fi infrastructure is
usually deployed with a large number of relatively dense
access points. It may seem that a higher positioning accuracy
can always be achieved if more access points are utilized.
However, this is not the case as indicated by Kaemarungsi
and Krishnamurthy [8]. Instead, a subset of access points can
be used for the same level of system performance at a much
reduced overhead. A straightforward approach would be to
select the subset of access points with the highest observed
RSS. More intelligently, Chen et al. [9] provide a novel
selection strategy based on the discriminant power of each
access point using an information gain criterion. As a result,
the access points that best differentiate the survey positions
are selected for positioning services.

Calculation of the distances between an RSS observation
and the fingerprints stored in a database is the essence of
fingerprint-based techniques. Multiple methods exist to cal-
culate such a distance (e.g., Euclidean distance and cosine
similarity). The returned result is either the survey point with
the smallest distance to the observation (i.e., nearest neighbor
(NN) classification) or a representative of k closest survey
points (i.e., k-nearest neighbor (KNN) classification) [2]. An-
other flavour of Wi-Fi positioning methods rely on probabilis-
tic techniques like Bayesian Networks or Gaussian kernels to
handle the uncertainty in RSS measurements [10], [11], [12],
[13]. Here, positions are estimated using posterior probability
density functions.

The accuracy of Wi-Fi fingerprinting thus designed is highly
dependent on the number of survey positions employed during
the training phase. This not only implies a high system over-
head and training cost, but also be vulnerable to environmental
changes. Indeed, maintaining such a system would require re-
training the system almost from scratch. On the other hand,
if the system is augmented with learning or compensation
capabilities, it will be able to update its own knowledge. Since
these systems may provide services to many mobile users,
such a learning capability can be obtained via user feedback
for free during the positioning phase. Active Campus [14]
is an early system integrating user feedback. It allows users
to incrementally update the training data for future usage.
Similarly, Redpin [7] used a “folksonomy”-like approach,
where many users train the system while using it. A potential
pitfall in this approach is that the model constructed during
the training phase could also be adversatively affected by
unreliable or misleading user feedback. Thus, it is crucial that
the feedback from users should be given proper weights or
credibility, rather than blind acceptance or rejection. This idea
was first proposed in Hossain et al. [15], where a simple

credibility rating of positive user feedback is incorporated.
That is, when the user does not believe in the position returned
by the system, an alternate position can be suggested. In their
system, positive user feedback is given a higher credibility
weight if the suggested position has a small discrepancy with
the system.

In this work, we devise a more general framework using a
wider variety of user feedback. Such a framework is endowed
with a high degree of system robustness when a large num-
ber of users provide correct feedback. Even when incorrect
feedback is provided, the system is able to quickly recover by
incorporating subsequent corrective feedback.

III. POSITION ESTIMATION BASELINE

We start by first introducing a baseline Wi-Fi fingerprinting
system. The implementation of this baseline system is similar
in many respects to the systems reviewed in Section II.
However, it is also refined to be more robust and suitable
for integrating and processing user feedback. A summary of
notation used in this article is listed in Table I.

TABLE I
LIST OF NOTATION

Symbol Meaning
Ci Number of occurrences of access point i
σi RSS variance of access point i
F Wi-Fi RSS fingerprint

σF Variance of the Wi-Fi RSS fingerprint
As System anchor
ps The physical coordinates of system anchor
Fs Wi-Fi RSS fingerprint of system anchor

d(i, j) Euclidean distance from anchor point i to j
Li Likelihood of anchor i
L Likelihood vector

Au User anchor
pu The physical coordinates of user anchor
Fu Wi-Fi RSS fingerprint of user anchor
α Positive user feedback compensating factor, α = 1

a+e−x

x Independent variable accumulating via similar user feedback
T Current Wi-Fi scan times
Ts Wi-Fi scan times used in system training phase
∆x Increment derives from a similar user feedback
a Parameter adjusting the initial and maximum value of α
b Parameter adjusting the increasing velocity of x
β Negative user feedback compensating factor, β = e−x

L′
i Compensated likelihood of anchor i

A. Training Phase

In the training phase, a set of grid points within the
study area were selected as survey positions. The training is
conducted for each survey point in a two-step process.

1) Collect raw Wi-Fi measurement data: For each survey
position, a trainer uses a mobile device to scan for the beacons
transmitted by nearby Wi-Fi access points. Each scan is
recorded as a list of 2-tuples, where a 2-tuple element is a
pair of the MAC address of the access point and its RSS in
decibels. Since the RSS can fluctuate drastically, the trainer
usually conducts multiple scans in order to collect sufficient
data. As a result, in a given period of sampling, the device
logs a time series of these data.



2) Generate Wi-Fi RSS fingerprint: We next extract some
statistics from the raw Wi-Fi measurement data to generate
an RSS fingerprint for each survey position. We define a Wi-
Fi RSS fingerprint as a vector of 5-tuples (i.e., MAC, RSS
Mean, RSS Variance, Timestamp, and Count), describing a set
of access points. The MAC field contains the MAC address
of the access point, denoted herein as i. RSS Mean is an
average of the Wi-Fi RSS over the sampling period. The time
of the fingerprint creation is stored in the Timestamp field. The
value of Count is the number of occurrences of the access
point during the sampling period, denoted Ci, which is a very
important indicator for the reliability of this access point. For
a fixed number of Wi-Fi scans, a large Count value means that
the access point can be heard for most of the time, indicating
that the access point will have a more reliable estimation
of its RSS value. RSS Variance contains the variance of the
measured RSS from the access point, denoted σi.

At the end of the training phase, each survey position
is associated with an RSS fingerprint containing the access
points that best describe the specific location. For each survey
position ps in the system, we define a system anchor As as
(ps, Fs), where Fs is its RSS fingerprint. The collective RSS
variance for this fingerprint is defined as

σFs =

∑
i∈Fs

σiCi∑
i∈Fs

Ci
(1)

B. Positioning Phase

1) Calculate likelihood: For experimental purposes, the
prototype implementation allows for a variable number of Wi-
Fi scans. After each scan, we send the generated RSS vector
to the system for position estimation. Each subsequent scan
leads to a cumulative estimation result with a decreasing error.
For position estimation, we employ the Gaussian kernel [16],
which is commonly used to calculate the likelihood between
an RSS fingerprint in system anchors and the current RSS
measurement. Thus, each system anchor will then have a
likelihood for being the estimated position of the device. We
use the top-k anchors to determine the user’s position, where
k = 4 by default in our experiments.

2) Present position: A naı̈ve approach is to use the “cen-
tre” of the top-k anchors as the estimation for the position.
Usually, these k survey points are close to each other in the
physical space, and they can be considered as a cluster. Thus,
their weighted mean position is a reasonable representative.
However, if one or more outliers exist, the weighted mean
position could be pulled far away from the cluster formed by
other system anchors. As a result, this mean position could be
a meaningless point in the physical space.

Instead, we can use an approach to the vertex p-centres
problem [17] to determine the representative of the top-k
anchors. In particular, the vertex 1-centre is the system anchor
point that minimizes the maximum distances from itself to
the other top-(k − 1) anchor points. These distances are
weighted with the likelihood estimated as above. For two
indices i, j = 1, 2, . . . , k, we minimize the following over all

values for i
max
j ̸=i

d(i, j)

Li
(2)

The d(i, j) is the Euclidean distance between anchor ASi and
ASj and Li is the likelihood of ASi . The resulting anchor
point becomes the estimation for the location.

IV. USER FEEDBACK MODEL

The focus of this work is on providing position information
on mobile devices, where users can provide feedback to the
positioning service. That is, users can choose to accept or
reject the system estimation, or even suggest an alternative
location based on their knowledge of the surroundings. In this
section, we define a user feedback model in order to improve
system performance. It is useful to begin by identifying the
three types of user input that can be collected within a human-
centric collaborative feedback system:

• Positive feedback is generated when a user rejects the
estimated position and suggests a location based on
his/her knowledge. In such a case, the system can accept
the updated information from the users. The result is
that the system may create a new anchor from the user’s
suggestion, called a user anchor.

• Negative feedback indicates that the estimated position
is not believed by the user, who is unable to make any
suggestion as to his/her current location. In this case, the
system should reduce the positioning likelihood of the
returned location in the future.

• Null feedback occurs when a user chooses not to provide
any feedback. The assumption here is that the estimated
position is accurate, and that there is no need to make
any modification to the positioning model.

Assume that the model has N (system and user) anchors,
and the likelihood of the i-th (i = 1, 2, . . . , N ) anchor is
denoted as Li. Before ranking these anchors based on the
estimated likelihood, our user feedback model compensates Li

with two factors, αi and βi. These factors are controlled by
the history of positive and negative user feedback, respectively.
The likelihood of anchor Li then becomes

L′
i =

{
βiLi if Li is system anchor.
αiβiLi if Li is user anchor.

(3)

A. Positive User Feedback

Whenever the system receives a user-suggested location
associated with its RSS measurement, the system creates a
temporary user anchor (Au). If this anchor is sufficiently
similar to an existing user anchor in the model, it is merged
with it, and the α factor is updated. Otherwise, it becomes a
new user anchor, with the associated α factor set to a small
initial value.

1) Temporary user anchor: Since a user’s suggested po-
sition could be arbitrary, saving these suggestions separately
would bloat the model significantly. Therefore, we use discrete
locations by dividing the space into an m × n grid. That is,
any position within a grid cell is represented by the centre of



Fig. 1. The user interface allows the user to select grid cells for positive
feedback, confirming this choice with a double tap.

the cell. This grid-based selection of the position is enabled
directly in the interface provided to the user (see Figure 1).

We define the user anchor Au as:

Au = (pu, Fu) (4)

The pu is the cell centre that contains the user suggested
position and Fu is the fingerprint summarized from the current
Wi-Fi RSS measurement.

2) Anchor merge: A temporary user anchor Aui is merged
with the an existing user anchor Auj in the same cell if their
fingerprints are sufficiently similar. Specifically, we use cosine
similarity to compare two fingerprints. If multiple anchors
already exist in the same cell as Aui , we only consider the
most similar one, denoted Auj

. If the similarity between Aui

and Auj is greater than a threshold s, the temporary user
anchor is regarded as the same as the existing one.

3) α factor: Whenever a temporary user anchor is merged
with an existing user anchor in the system, the associated α
factor is updated. For user anchor Aui

, we define αi as

αi =
1

a+ e−x
, with x ≥ 0 and 0 < a ≤ 1 (5)

The variable x has a cumulative effect and a is a parameter
controlling the initial and maximum values of αi. As more
positive feedback is provided in support of user anchor Aui

,
its α factor gradually increases until it reaches an upper limit.
Here, the magnification capability of the α factor is a+1

a . The
increment of x is defined as

∆x =
T
Ts

+ e−σF

b
with b > 0 (6)

The pace of the increase of x is controlled by a few aspects.
1) An independent parameter b. 2) The variance of the current
RSS fingerprint, σF . 3) If T is the number of Wi-Fi scans
used in the positioning query and Ts is the number of Wi-Fi
scans used during system training, their ratio T

Ts
also reflects

the credibility of this positive feedback.
As a result, the α factor increases fastest with the first few

instances of the user anchor, becoming stable once a sufficient
number of feedback events are received. The rationale for
this design is to allow the system to quickly adapt to new
information provided by the users, but without this feedback
overpowering the system.
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Fig. 2. The experimental field includes both the training cells (green triangles)
as well as measurements taken outside of the training area (red discs).

B. Negative User Feedback

Suppose the system delivers a position from top-k anchors
according to their likelihood ranking, but the user believes
this location to be incorrect and cannot provide any further
information regarding the actual location. Negative user feed-
back on this estimated position can also provide valuable
information to the system. Typically, when a user rejects the
position estimated by the system, the reason could be that the
user is nowhere near any of the anchors known by the system.
In this case, none of the top-k anchors would truly represent
a good estimate. Therefore, we should try to decrease their
likelihoods simultaneously.

Given an anchor Ai, we use a negative user feedback factor
βi to reduce its likelihood according to the accumulation of
negative feedback received. Similar to the positive feedback
model, the negative factor model also has fast adaptability.
Accordingly, we define βi as

βi = e−x (7)

When an anchor is given a negative feedback, we give x in
above formula the same increment ∆x used in the positive
user feedback. The value of β is inversely related to x, such
that β will decrease from the initial value 1 to its limit zero
as x increase from zero to infinity. As a result, if more and
more users reject the same set of anchors, they will never be
chosen as the top-k due to the small value of the β factor.

V. EVALUATION

Experiments and evaluations with this feedback model were
conducted in an office setting. The space was divided into
a grid using a 3×3m cell size. 33 positions were selected
within the hallways for training the baseline system (denoted
the training area), and additional 20 positions were selected
as untrained positions for testing purposes (denoted the non-
training area). A diagram of the setting is provided in Figure
2.

The prototype system was developed for iPhone OS 3.1.2;
experiments were conducted using Apple iPhones and iPod
Touch devices. The evaluation represents three levels of in-
creasingly complex scenarios, (i.e., no feedback, knowledgable
and helpful feedback, and mixed feedback).



As mentioned earlier, the parameters in the feedback model
are used to adjust the rate of change of the α and β factors
(i.e., the sensitivity of our user feedback model). In production
environments, the sensitivity of the user feedback model will
depend on the number of users. However, for the purpose
of evaluation, extra weight is given to the user feedback
information in order to speed up the system evolution.

A. No Feedback

Since the time that a user is willing to spend waiting for a
positioning result could affect the service quality, we need to
conduct experiments to investigate the relationship between
time (e.g., Wi-Fi scans) and system accuracy. We use the
baseline system to determine the smallest number of Wi-Fi
scans (measured at one scan per second) needed for the system
to produce a reasonably accurate result.

In the training area, for each survey point, we collected 20
scans of the Wi-Fi RSS, using these incrementally to query
the positioning system. The average positioning error after
each scan is plotted as the bottom curve in Figure 3. We
can observe that for a small number of scans, the system has
an error between 2 and 4m. As more scanned RSS data are
used (i.e., greater than four), the accuracy stabilizes at around
2m. Similarly, in the non-training area, we also collected 20
scans for each position. We plotted the positioning accuracy
for the number of scans as the top curve in the same figure.
In this case, the absolute error is significantly greater than in
the training area. However, in either case, four scans provides
a reasonable trade-off between accuracy and time. Thus, we
use this as the number of Wi-Fi scans in the rest of our
experiments.

B. Knowledgable and Helpful Feedback

Next, we investigated how the user feedback model im-
proves the system performance. In this scenario, whenever the
system returns a position that does not match the true position
of the user, feedback was provided. We modelled the user as
being knowledgable and helpful; whenever the position was
inaccurate, the user suggested positive feedback 80% of the
time, and negative feedback 20% of the time.
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Fig. 3. Using the baseline system, the positioning error becomes relatively
stable using just four Wi-Fi scans. Note that the system is significantly more
accurate within the training area.

Within the training area, we define a round as a traversal of
all 33 positions. In a round, the user stopped at each survey
position to scan the RSS for the nearby access points (using
four scans). If the result was correct, the user moved to the next
position. Otherwise, the user provided feedback before moving
on. The average positioning accuracy after nine such rounds
of visiting and testing each position is plotted in Figure 4.
In the course of providing this user feedback, the positioning
error improved from approximately 2.5m to 1.5m after just
four rounds. From there, little change was observed.

Within the non-training area, the experiment following the
same procedure, with the data plotted in the same figure.
Because there was no training data in these regions, the initial
positioning error was rather large. However, after 13 rounds of
collecting user feedback, the error decreased from 9m to 2m.
As a result, the positioning error in an area that had not been
previously trained became comparable to the training area.

At the beginning of the testing within the non-training
area, the model contained only system anchors, and therefore
could only return the position of a system anchor (i.e., within
the training area) to the user. These positions were often far
from the true position of the user. As a result of the positive
feedback, user anchors were added and the relative weight of
these anchors were enhanced by the α factor. Similarly, with
the negative feedback, the weight of the system anchors were
reduced by the β factor. As a result, the positioning accu-
racy increased as more user anchors become valid candidate
positions. What this means for indoor positioning systems is
that the system training and maintenance cost can be reduced
significantly by relying on knowledgable and helpful end users
working on a partially trained system, eventually achieving the
same level of accuracy as a fully trained system.

C. Mixed Feedback

In a real environment, user feedback can be either helpful or
malicious. In this experiment, we test the model to determine
its ability to recover from incorrect feedback. In particular,
we model the user feedback as completely malicious at the
beginning and as completely informative thereafter. Such a
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Fig. 4. The system accuracy is improved when integrating knowledgeable
and helpful user feedback. With sufficient feedback, the performance in the
non-training area approaches that of the training area.



behaviour is not typical but it provides a “worst case scenario”
study of the system and its ability to recover from incorrect
or malicious feedback.

Our focus here is on the training area only. As seen in the
previous experiments, the non-training area can become nearly
as good as the training area with sufficient user feedback. As
such, we expect similar results within the non-training area as
the training area with respect to mixed feedback.

During the initial phase of this experiment, whenever the
system returns a correct position estimation, the malicious
user has a 50% chance of either providing negative feedback
of suggesting a random false position. When the system is
incorrect, the malicious user provides null feedback. Following
a similar methodology as the previous experiments, such
malicious feedback was provided for four rounds. Another
eight rounds of feedback from a knowledgeable and helpful
user was then collected.

The position errors for this experiment are plotted in Fig-
ure 5. We observe that the system error starts out with around
4m and quickly increases to 14m as a result of the malicious
feedback. The helpful feedback quickly corrects the significant
positioning errors, recovering to the starting accuracy after five
rounds of feedback, and below 3m after eight rounds.

VI. CONCLUDING REMARKS

In this paper, we presented a model for using human-centric
collaborative feedback for Wi-Fi-based indoor positioning.
This model allows for the collection and use of both positive
feedback (i.e., adding and re-weighting user anchors) and
negative feedback (i.e. re-weighting both system and user
anchors). Experiments illustrate the ability of the system to
improve upon the positioning error in both regions that have
been trained, as well as in nearby regions that do not include
any training data. The system was also shown to be robust
with respect to malicious feedback, quickly recovering based
on helpful user feedback.

This feedback model may be extended in a number of
interesting ways. For example, the model could take advantage
of the timestamp within the RSS fingerprint, limiting the can-
didate fingerprints to those that were created at approximately
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Fig. 5. Providing malicious user feedback, followed by knowledgeable and
helpful user feedback illustrates the ability of the model to self-recover.

the same time of the day. This could increase the accuracy of
the system in locations with time-dependant changes in human
activity. The introduction of a “forgetting factor” could also be
used to address situations where malicious feedback has been
received but subsequent helpful feedback is not available.
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