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Abstract. We propose an approach for real-time sentiment-based anomaly
detection (RSAD) in Twitter data streams. Sentiment classification is
used to split the data into independent streams (positive, neutral, and
negative), which are then analyzed for anomalous spikes in the number
of tweets. Four approaches for evaluating the data streams are studied,
along with the parameters that adjust their sensitivity. Results from an
evaluation show the effectiveness of a probabilistic exponentially weighted
moving average (PEWMA) coupled with a sliding window that uses me-
dian absolute deviation (MAD).

1 Introduction

Time-series data streams have become a popular way of characterizing the data
generated by real-time applications with a temporal attribute. Since such data
can introduce new patterns very quickly, data stream mining has drawn interest
from many researchers, with a focus on developing anomaly detection techniques
that are both computationally efficient and memory efficient [4, 5, 10]. Anomaly
detection in time-series data streams is challenging in three aspects [11]: (1) the
dynamic nature of the data streams may result in changes in the data distribu-
tions over time (called concept drift); (2) storing the data for further analysis
is not feasible given the high-velocity and infinite nature the data; and (3) the
analysis must happen sufficiently quickly to be able to operate in real-time.

Twitter has become a popular micro-blogging platform where millions of
users express their opinions on a wide range of topics on a daily basis via tweets,
producing large amounts of data every second that can be modelled as time-series
data streams and analyzed for anomalies. Twitter allows real-time collection of
streams of tweets related to any specified topic keywords, hash tags, or user
names through their public streams service [13]. This easy access to the data has
enabled researchers to study and propose a broad range of techniques, including
visual analytics [6, 8], sentiment analysis [2, 12], and anomaly detection [5].

The work in this paper is motivated by the challenge of providing users with
timely information about different opinions relevant to topics of interest without
requiring continual observation. In order to derive public opinions, tweets can



be subjected to sentiment classification, resulting in a labelling of individual
tweets as positive, neutral, or negative [2]. A visual analytics based approach
has been used in our prior work to discover and analyze the temporally changing
sentiment of tweets posted by fans in response to micro-events occurring during
a multi-day sporting event [6]. However, with this approach, in order to discover
emerging micro-events that are causing significant increases in positive, neutral,
or negative tweets, one must analyze data continuously. The goal of the research
described in this paper is to detect in real-time anomalies in Twitter sentiment
data streams, providing alerts to the analysts of the change, and enabling them
to conduct further analysis immediately.

Real-time sentiment-based anomaly detection (RSAD) starts by classifying
the tweets and aggregating them in temporal bins of a fixed interval (e.g., 15
minutes). Candidate anomalies are detected based on their deviation from the
distribution of recent data; these are then compared to other previously seen
anomalies within a sliding window to identify legitimate anomalies. This ap-
proach is resilient to concept drift, makes use of an incrementally updatable
model, and is efficient enough to handle high-velocity data streams.

2 Methodology

We consider a data point to be an anomaly if it deviates sufficiently from nearby
data points or a specified group of data points in the past. We define a candidate
anomaly to be a data point that deviates from the local or nearby data points.
Moreover, if this candidate anomaly deviates from the group of other previously
detected candidate anomalies in some limited timeframe, we consider it a legit-
imate anomaly. In the remainder of this section, we explain the approach used
in RSAD to detect these types of anomalies.

2.1 Pre-Processing

A unique feature of RSAD is the detection of anomalies within pre-classified
data streams. The rationale for this is to allow for the independent detection of
anomalous increases in tweets that are positive, neutral, or negative in nature.
From the perspective of anomaly detection, we can consider the classification
process as a pre-processing step. We use an online sentiment analysis service
called Sentiment140 [12], which was designed specifically to address the short
and cryptic nature of English language tweets.

In order to turn the streams of tweets into time-series data, we aggregate
them over a pre-determined interval of time (e.g., 15 minutes). The granularity
of this binning will affect the sensitivity to small-scale vs. large-scale anomalies
and can be set based on an expectation of the velocity patterns of the tweets for
the given query. Since the goal is to analyze these data streams only based on
the tweet frequency, once the classification and temporal binning are performed,
the actual contents of the tweets are forgotten. All that remains is the number of
positive, neutral, and negative tweets that were seen in each time period. These
frequency counts serve as the data points (dt) for anomaly detection stage.



2.2 Candidate Anomaly Detection

To detect the candidate anomalies from among the local context of data points,
we consider a deviation-based approach using two possible methods for deter-
mining the average of the previously seen data points: exponentially weighted
moving average (EWMA) [9] and probabilistic exponentially weighted moving
average (PEWMA) [3]. While each of both these approaches have been used to
detect outliers in streaming data in two separate contexts [3, 8], it is not clear
which is most appropriate for the RDAS approach and Twitter data.

An anomaly score of a data point dt is calculated to represent its deviation
from the mean of the data points in its neighbourhood. The candidate anomaly
score (CAS) is evaluated using following formula:

CAS(dt) =
|dt − µc(t−1)|

µc(t−1)
(1)

where t is the time of current bin, and µc(t−1) =
∑N
i=(t−1) di is the mean of

recent data points. CAS was adapted from the A-ODDS technique [10], in which
the neighbourhood density of each data point is determined using a probability
density estimator and then the anomaly score of a data point is computed in
terms of the relative distance between its neighbourhood density and the average
neighbourhood density of recent data points. In the A-ODDS approach, the
neighbourhood consists of a set of data points up to radius r on both sides of
the data point. In the streaming context, the local neighbours of an newly arrived
data point are the ones that recently arrived because the following data points
have not yet been received. Thus, in our work, CAS is the relative distance of
dt to the mean of the recent data points.

If the CAS of the current data point is near zero; the point is close to the
other data points. If the CAS of the current data point is a large value, then
it is significantly larger or smaller than the other data points. In order to label
the current data point as a candidate anomaly, the CAS should be larger than
the standard deviation of the previously seen data points by some factor. The
threshold condition for a data point dt to be so labeled is given as:

CAS(dt) > τc ∗ σc(t−1) (2)

where σc(t−1) =
√

1
N

∑N
i=(t−1)(di − µc(t−1))2 is the standard deviation of the

of recent data points, and τc is a threshold factor for candidate anomalies. τc
can be set by a domain expert according to the particular features of the data
stream. A lower value of τc increases sensitively to clustered anomalies, whereas
a higher value increases sensitivity to dispersed anomalies.

With each new data point, it is necessary to update µc(t) and σc(t). A näıve
approach is to maintain all the data points in the N previous steps, and use the
standard formulation to evaluate µc(t) and σc(t). However, it would be difficult
to determine an appropriate value for N that would be feasible in the streaming
context without losing accuracy. Another approach is to use an exponentially



weighted moving average (EWMA) [9] and incrementally update µc(t+1) and
σc(t+1) as given in the equations:

µc(t) = αEWMA ∗ µc(t−1) + (1− αEWMA) ∗ dt (3)

σc(t) = αEWMA ∗ σc(t−1) + (1− αEWMA) ∗ |dt − µc(t−1)| (4)

Here 0 < αEWMA < 1 is the decay weighting factor. The αEWMA parameter
controls the weight distribution between the new data point dt and the old mean
µl(t−1); a value of 0 implies no weight on the history, while a value of 1 implies
all weight on the history. An inherent assumption with the EWMA approach is
that the mean is changing gradually with respect to the exponential weighting
parameter αEWMA, as shown in equation 3. Thus, a significant change in dt will
result in a significant increase in µc(t) and an even greater increase in σc(t).

To increase resiliency against such changes in dt, the value of weighting pa-
rameter αEWMA can be dynamically adjusted. More precisely, if dt changes with
respect to recent data points, then a higher weight (αEWMA close to 1) should
be given to the recent data points; otherwise more weight should be given to dt.
Probabilistic EWMA [3] adjusts the weighting parameter based on the proba-
bility of the occurrence of the value of the current data point. The probabilistic
weighting parameter is given as αPEWMA = αEWMA (1− βPt), where Pt is the
probability of occurrence of dt and β is the weight placed on Pt. The parameter
αEWMA is multiplied by (1− βPt) to reduce the influence of abrupt change in
dt on the moving average.

The probability density estimator equation with the standard normal dis-

tribution for Pt is given as Pt = 1√
2π

exp
(
−Z

2
t

2

)
. While evaluating Pt for the

current data point dt, it may happen that Pt → 0, if σc(t−1) → ∞. To avoid
such situations, normalization is applied to the input data points to obtain a
zero-mean and unit standard deviation random variable Zt = (dt − µl) /σl. The
factor 1√

2π
is the constant height and it is selected to normalize Pt such that

0 < Pt <
1√
2π

. The drawback of considering the standard normal distribution

is that for larger value of dt, Pt → 0. However, our approach does not require
that the deviation of dt be large, as long as it is sufficiently deviated from the
underlying data distribution. By adjusting equation 3, with the probabilistic
weighting factor [3], we get:

µc(t) = αPEWMA ∗ µc(t−1) + (1− αPEWMA) ∗ dt (5)

2.3 Legitimate Anomaly Detection

To detect whether a candidate anomaly should be considered a legitimate anomaly,
we use a one-sided sliding window of length Wt (e.g., 6 days). In contrast to the
conventional method of maintaining all past data points in the sliding window,
we maintain only those data points that are identified as candidate anomalies.
We consider a window-based deviation approach using two possible methods for
determining the deviation of the data points in the window: standard deviation



(STD), based on the simple arithmetic mean, and median absolute deviation
(MAD), based on the median. While each approach has been used to detect
outliers in static time series data, it is not clear which is most appropriate for a
sliding window.

To determine whether a candidate anomaly should be considered as legit-
imate, the legitimate anomaly score (LAS) is calculated. The LAS of a data
point represents its deviation from the mean of the candidate anomalies in the
window. For the current data point dt, the equation for LAS is computed as:

LAS(dt) =
|dt − µw(t−1)|

µw(t−1)
(6)

where µw(t−1) =
∑Wt

i=(t−1)Ac(i) and Wt is the window length. LAS gives the
relative distance of dt with respect to the mean of the candidate anomalies in
the window.

The significance of LAS is similar to that of CAS in equation 1. Thus, the
value of LAS for data point dt should be sufficiently large in order to label it as
a legitimate anomaly. The cutoff condition is given as:

LAS(Dt) > τl ∗ σw(t−1) (7)

where σw(t) =
√

1
Wt

∑Wt

i=(t−1)(di − µw(t−1))2, the standard deviation (STD) es-

timated from the simple arithmetic mean of the recent candidate anomalies in
the window. τl, is a threshold factor for legitimate anomalies.

At each step of the algorithm we update the mean µw(t) and standard devi-
ation σw(t) with respect to the sliding window. Since only candidate anomalies
are maintained in the window, the number of data points is relatively small. In
such small data cases, the standard deviation technique is strongly affected by
presence of extreme values [7]. As a result, statistical techniques that are ro-
bust against extreme anomalies are recommended, such as median and median
absolute deviation (MAD) [7]. The median of the sliding window of previously
detected candidate anomalies is given as: ˆµw(t) = median(Wt). The median ab-
solute deviation (MAD) is calculated as, ˆσw(t) = mediani (|dt −medianj (Wt) |).

3 Preliminary Experimental Evaluation

In order to evaluate and compare the different alternatives for identifying can-
didate and legitimate anomalies, we performed anomaly detection experiments
using Twitter data streams collected during 2013 Le Tour de France cycling races
[6]. This event was held from June 29 - July 21, 2013, and is the premier race in
professional cycling. The data set contains 449,077 English tweets retrieved from
the Twitter public stream that were posted using the official hash tag (“#tdf”)
during the event period. Since the event is no longer live, for the purposes of
this evaluation, we simulated an artificial data stream using these tweets. Given
the features of this data, the aggregation period was set to 15 minutes, and the
sliding window length was set to 6 days.



The combination of the two models that can be applied to detect candi-
date anomalies (EWMA and PEWMA) and the two models that summarize
the statistical properties of the sliding window (STD and MAD) result in four
approaches to be evaluated. The threshold parameters for the candidate and
legitimate anomaly detection steps (τc and τl, respectively) were independently
manipulated in the range [1, 5]. The decay factor for both EWMA and PEWMA
was fixed at αEWMA = 0.97 and αPEWMA = 0.99 respectively, which are opti-
mal minimum mean square error parameters in many settings [3].

For the experiments, we leveraged an open source, real-time distributed
stream processing framework, called Apache Storm [1]. The four approaches
were implemented in the Storm framework independently and then evaluated
with the input of the simulated data stream. In the absence of classification
labels indicating known anomalies in the tweets data stream, we worked with
domain experts to assess the false positives and false negatives identified in the
data. For each experimental setting, precision and recall were calculated, along
with the F-score. Furthermore, since our goal was to discover an approach that
works well across all three sentiment classes, we averaged the F-score over the
positive, neutral, and negative data streams for each experimental setting.

3.1 Results and Analysis

Given the combination of the two alternatives in the candidate anomaly step with
the two alternatives in the legitimate anomaly step, we arrived at four approaches
to evaluate: EWMA-STD, EWMA-MAD, PEWMA-STD, and PEWMA-MAD.
The results of the experiments in the manipulation of the threshold parameters
τc and τl are provided in Figure 1.

The first item of note from these experiments is that the STD approach
(Figures 1a and 1c) is very sensitive to the value of τl. As this parameter is
increased, the method for determining if a candidate anomaly is considered a
legitimate anomaly will be more strict. While this resulted in high precision
(those that met this criteria were clearly anomalies), the recall was adversely
affected with many actual anomalies not being detected. This pattern held for
both the EWMA and PEWMA approaches.

Considering the MAD approach, a similar pattern of the F-score decreasing
as τl increases holds for the EWMA approach (Figure 1b). Furthermore, as τc
increases, there is also a general pattern of the F-score decreasing. This is due
to extreme anomalies having an significant impact on the mean value, making it
difficult to discover additional anomalies in the local context when the threshold
value is high. As a result, this produced a high precision and a low recall. For the
PEWMA approach (Figure 1d), it is clear that this method was more resilient
to the settings of the parameters. This was due to the more effective approach
for calculating the mean value within the local context, which also made the
candidate anomalies within the sliding window more representative of the true
anomalies.

The highest F-score achieved across all 100 experimental settings was 0.80
(PEWMA-MAD, τc = 4, τl = 4). While the other methods approached this
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(c) PEWMA−STD
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Fig. 1. Candidate anomalies identified as legitimate using STD and MAD, estimated
wit mean and the median respectively. (Tweets aggregated at 15 minutes interval)

value for certain settings, given the resilience of PEWMA-MAD to the threshold
parameters, we conclude that it is the superior approach for our purposes.

3.2 Real-Time Performance

In terms of computational complexity, the calculations used to determine the
candidate anomalies are linear due to the incremental nature of calculating the
EWMA and PEWMA. When determining whether a candidate anomaly is a
legitimate anomaly, it is necessary to loop over all of the candidate anomalies
within the current window. As such, this step has a complexity of O(n), where
n is the maximum number of potential candidate anomalies. Given a window
size of 6 days and an aggregation interval of 15 minutes, the worst-case value
for n is 576. Clearly, with these settings, the approach can be considered to run
in real-time. Even with an extremely high velocity data stream, as long as the
aggregation interval is kept in the minute-range, the approach will be able to
keep up on a sufficiently fast computer system.

4 Conclusion and Future Work

In this paper we have highlighted the problem of real-time detection of changes
in the sentiment in Twitter data steams. We showed that the proposed RSAD



approach can efficiently detect anomalies in presence of temporal drift when used
with PEWMA-MAD technique. In the experimental evaluation of the candidate
algorithms for detecting anomalies within the 2013 Le Tour de France data set,
we found that the PEWMA-MAD approach was accurate and resilient to the
settings of threshold parameters. Future work will focus on evaluating the RSAD
approach over multiple datasets and compare it to other approaches from the
literature. Furthermore, we wish to expand this approach to identify cyclical
patterns in the data, in order to exclude these from being detected as anomalies.
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