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A game-theoretic perspective on rough set analysis
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Abstract : Determining the correct threshold values for the probabilistic rough set approaches has been a heated issue among
the community. Existing techniques offer no way in guaranteeing that the calculated values optimize the classification ability
of the decision rules derived from this configuration. This article will formulate a game theoretic approach to calculating
these thresholds to ensure correct approximation region size. Using payoff tables created from approximation measures and
modified conditional risk strategies, we provide the user with tolerance levels for their loss functions. Using the tolerance

values. new thresholds are calculated to provide correct classification regions. This will aid in determining a set of optimal
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region threshold values for decision making.
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1 Introduction

Game theory [ 1] is a powerful method for mathe-
matically formulating competition between two or more
entities. These entities, or players, aspire to either a-
chieve a dominant position over the other players or
collaborate with each other in order to find a position
that benefits all. When aiding in data analysis, game
theory is useful for exploring the variety of outcomes
that result from utilizing different methods or approa-
ches that are designed to solve a problem. In the end,
one may determine the course of actions that a tech-
nique should undertake to achieve an outcome observed
with a game-theoretic formulation,

Game theory may offer a fresh perspective on rough
set analysis. Rough sets have been used to aid in con-
flict analysis [ 2], a related field to game theory. In
Rough Sets [ 3] and its extensions [4-7 |, a set within
the universe of discourse is approximated. Rough re-
gions are defined with these approximations. One of
the goals of improving the classification ability of
rough sets is to reduce the boundary region, thus, re-
duce the amount of classification uncertainty. The de-
cision-theoretic rough set (DTRS) approach [4] to

probabilistic rough sets may particularly benefit from
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some new insights provided by game theory. This ap-
proach utilizes the Bayesian decision procedure to cal-
culate classification regions [ 7]. Loss functions corre-
spond to the risks pertaining to the classification of an
object into a particular rough set region. This gives the
user a scientific means for linking their risk tolerances
with the probabilistic classification ability of rough sets
[8].

Classification ability of a rough set analysis system is
a measurable characteristic [ 9]. The decision-theoretic
model observes a lower and upper-bound threshold for
region classification [ 10]. A method for measuring the
relationship between accuracy or precision and the ex-
pected cost of a classification would help in the adop-
tion of these data analysis techniques [ 11 ]. The
thresholds in the DTRS approach correspond to the
probabilities for inclusion into the positive, negative,
and boundary regions. These thresholds are calculated
through the analysis of loss function relationships.
Game theory may allow us to further study the effects
of associated risk on these loss functions and provide
the user with a suggestion on how to improve the clas-
sification ability of the system by either increasing or
decreasing their risk tolerances [12].

In this article, we investigate some possible connec-
tions between game theory and rough set analysis. We
introduce a method for calculating loss tolerance that
utilizes game theory to analyze the effects of modifying

the classification risk. This also provides an effective
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means of determining how much a loss function can
fluctuate in order to maintain effective classification a-
bility. It is observed that game theory can formulate a
link between loss functions and the changes in associ-

ated risk with the classification of an object.

2  Game theory and decision-theoretic
rough sets

We will provide a brief introduction to game theory

and the decision-theoretic rough set approach.
2.1 Data analysis with game theory

Game theory [ 1] has been one of the core subjects
of the decision sciences, specializing in the analysis of
decision making in an interactive environment. It arose
from the result of trying to mathematically express a
simple game, including rules and actions a player of
that game would perform.

Many applications or problems can be expressed as a
game between two or more players. If a problem or
application can be expressed as a game, it can be ex-
pressed in a way that some aspects of game theory can
be utilized. Therefore, the study of game theory can
be thought of as an advanced problem solving tech-
nique that can be used in many domains. The disci-
plines utilizing game theory include those of economics
[13, 14 ], machine learning [ 15], networking [16 ],
and cryptography [17].

The basic assumption of game theory in terms of us-
age is that all participating players are rational in terms
of attempting to maximize their expected payoffs. This
presents problems when compared with neoclassical e-
conomics. It narrows the range of possibilities that a
party can choose from. Rational behavior is much more
predictable than irrational behavior, as opposing par-
ties are able to determine other party’s strategies on
the basis that they will not do anything that makes
their situation worse than before.

In a simple game put into formulation consists of a
set of players O={o0, ,***,0,}, a set of actions S={a, ,
«s,a, } for each player, and the respective payoff func-
tions for each action F'= {4, ***s . }. Each player
chooses actions from S to be performed according to
expected payoff from F, usually some a; maximizing
payoff y;(a;) while minimizing other player’s payoff.

Let us look at a classical example of the use of game
theory: the prisoners’ dilemma. In this game, there

are two players, O= {0,,0, }. Each player has been

captured by authorities in regards to a suspected bur-
glary. While being interrogated by the police, the pris-
oners each have a choice of two actions they can per-
form: to confess and implicate the other prisoner for
the crime, or not to confess to the burglary, i.e. S=
{a, sa; } » where a; = confess and a; =don’t confess.
The payoff functions for each action correspond to the
amount of jail time that prisoner will receive. These
payoffs are expressed in Tab. 1, called a payoff table.

Tab. 1 Payoff table for the prisoners’ dilemma

02

confess don’t confess

01 serves 10 years, 01 serves O year,
confess

02 serves 10 years 02 serves 20 years

0]
o1 serves 20 years, o1 serves 1 year,
don’t confess

02 serves 0 year 0y serves 1 year

If prisoner o, confesses to the burglary and impli-
cates the other, he will serve either a maximum of 10
years in jail or serve nothing, depending on whether or
not prisoner o, confesses or not. If o, doesn’t confess.,
he will serve at least 1 year in jail or a maximum of 20
years. If both confess, they each serve 10 years. If
neither confesses, they both serve 1 year. Clearly,
without knowing the other’s action, a rational player
would choose to confess, as it provides the smallest
maximum jail term as well as the smallest overall
term.

The above example demonstrates one of the
strengths of game theory for aiding data analysis. It
provides clarity to complex scenarios where multiple
actions influence the outcome in a predictable manner.
The decision-theoretic rough set approach to data anal-
ysis is one such method where classification ability is
configurable by observing different values of condition-

al risk associated with an action.
2.2 Decision-theoretic rough set model

The decision theoretic approach is a robust extension
of rough sets for two reasons. First, it calculates ap-
proximation parameters by obtaining easily under-
standable notions of risk or loss from the user [ 107]. It
allows for simpler user involvement instead of having
parameters being arbitrarily provided. This is impor-
tant when users are not qualified to set the parameters
and just wish to perform analysis. Second, many ap-
plication domains could make use of cost or risk anno-
tations. We present a slightly reformulated decision

theoretic rough set model in this section, as reported in

(4. 7.
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Let P(w, | 2) be the conditional probability of an ob-
ject x being in state w; given the object description .
The set of actions is given by «/={a, ,ax,az}» where
apsay s and ap represent the three actions to classify an
object into POS(A) ,NEG(A), and BND(A) respec-
tively. Let A(as |A) denote the loss incurred for tak-
ing action a., when an object is in A, and let A(as |A®)
denote the loss incurred by taking the same action
when the object belongs to A°. This can be given as
loss functions Aep =A(as |A) sAeny =A(as | A°), and
& =P,N, or B.

The expected loss R(as |[2]) associated with taking
the individual actions can be expressed as:

Ry = R(ap | [2]) = A PA | [2]) +

A PCAC | [2])s
RN = R(aN | ET]) = /I\IPP(A | [Ij) +
AwPA | [2]),
Ry = Rap | [z = apPA | [z +
ABI\P(AV | [17])9 D
where Aop=2A(as |A) s den=A(as |A°), and O =P,
N. or B. Ry, Ry, and Ry are the expected losses of
classifying an object into the positive region, negative
region, and boundary region respectively.

If we consider the loss function inequalities App <App
< Awps we can formulate decision rules based on this
division of the universe. The corresponding inequalities
A <Apy <Apy can further tell us how the universe is
divided. We can formulate the following decision rules
(PP, NP, BP) based on the set of inequalities above
[18]:

(PP) If P(A|[a])=y and P(A|[x])=a,
decide POS(A),

If PCA[[x]D<Band P(A|[xD<y,

decide NEG(A),

(BP) I PCA|[x])=Band P(A|[x])<a,
decide BND(A),

(NP)

where,
o= Apn — Ay
(ABP - AB\I) - (APP - APN)
AN — Ann
= 2
7 (ANP — ANN) - (App *APA\]) ( )

‘8 _ Apn — Awn
(ANP - AN\J) — ()LBP — )(nN)

The Bayesian decision procedure leads to the follow-

ing minimum risk decision rules (PN—BN) [7]:

(PN) If RP <RN and RP <RB .
decide POS(A);
(NN) If RI\ <RP and R\1 <RB )

decide NEG(A);

(BN) If Ry<{Rp and Ry<<Ry,

decide BND(A).

The @,f, and y parameters define our regions,
giving us an associated risk for classifying an ob-
ject. The g parameter can be considered the divi-
sion point between the POS region and BND re-
gion. Likewise, the B parameter is the division
point between the BND region and the NEG re-
gion.

These minimum risk decision rules offer us a
foundation in which to classify objects into approx-
imation regions. They give us the ability to not on-
ly collect decision rules from data frequent in many
rough set applications [19], but also the calculated
risk that is involved when discovering (or acting

upon) those rules.

3  Rough set analysis from a game
theory perspective

We stated previously that the user could make
use of a method of linking their notions of cost
(risk) in taking a certain action and classification
ability of the classification system. This relation-
ship is possible by analyzing the consequences of
each fluctuation of expected cost. Game theory is a
powerful mathematical paradigm for analyzing
these relationships and also provides methods for
achieving optimal configurations for classification
strategies.

Game theory could provide a means for the user
to change their beliefs regarding the types of deci-
sions they can make [20]. If the classification sys-
tem is not precise enough, they would not have to
change the probabilities on their own. This is ben-
eficial as many users cannot intuitively describe
their decision needs in terms of probabilities. Fur-
thermore, when asked if they can modify their cost
beliefs (loss functions), they can perhaps be more
successful in this description. We present a five
step process for using game theory to aid in rough
set analysis in this section. These steps take into
account the formulations required in order to ob-
serve rough set data analysis as a competition be-
tween measures, how to measure the outcomes of
strategies, how to view the competition in an or-

ganized manner, and how to interpret the results
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one can achieve using these steps.
3.1 Game theory formulation process

When using game theory to aid in rough set a-
nalysis, there are five procedures to be utilized:
Step 1

tion defines what the game contains: the players

Game formulation: The game formula-

and what they represent as well as what their over-
all goals consist of.

Step 2 Strategy formulation: The strategy for-
mulation defines the possible actions that the play-
er can undertake,.

Step 3  Payoff measurement: The payoff meas-
urement defines how the game will measure the ef-
fectiveness of the actions defined in Step 2.

Step 4

petition implementation allows for the observation

Competition implementation: The com-

of the game by collecting the information into pay-
off tables and examining the relationships between
the actions undertaken and the payoffs associated
with those actions.

Step 5 Result acquisition:; The result acquisition
interprets the results of the competition.

We will present details of these steps in the fol-
lowing subsections, using the decision-theoretic

rough set approach.
3.2 Game formulation

The first step of the process is to formulate a
game. When using game theory to help determine
suitable loss functions, we need to correctly for-
mulate the following: a set of players, a set of
strategies for each player, and a system of payoff
functions. Game theory uses these formulations to
find optimal an optimal strategy for a single player
or the entire group of players if cooperation (coor-
dination) is wanted. A single game is defined as,

G=1{0,S.F} (3
where G is a game consisting of a set of players O
using strategies in S . These strategies are meas-
ured using individual payoff functions in F.

To begin, the set of players should reflect the o-
verall purpose of the competition. In a typical ex-
ample, a player can be a person who wants to a-
chieve certain goals. For simplicity, we will be u-
sing competition between two players. With im-
proved classification ability as the competition
goal, each player can represent a certain measure,

i.e., a set of players,

O—{$.¢) 1
where ¢ and ¢ are measures pertaining to different
characteristics of the system. In this case,$ repre-
sents approximation accuracy and ¢ represents ap-
proximation precision. Through competition, opti-
mal values are attempting to appear for each meas-
ure. Hence, an optimal cooperative solution would
have each measure achieving maximum payoff. Al-
though we are measuring accuracy and precision,
the choice of measures is ultimately up to the user
to decide. We wish to analyze the amount of move-
ment or compromise loss functions can have to
when attempting to achieve optimal values for
these two measures.

Each measure is effectively competing with the
other to win the “game”. Here, the game is to im-
prove classification ability. To compete, each
measure in O has a set of strategies it can employ
to achieve payoff. Payoff is the measurable result
of actions performed using the strategies. These
strategies are executed by the player in order to
better their position in the future, i. e. maximize
payoff. Individual strategies, when performed, are
called actions. It follows,

S;={a, " ,a,} (5)
where S; is the strategy set for a measure p;, € O
and a; is a j-th action in the strategy set. A total of
m actions can be performed for this player. This
strategy set must contain actions that are related to
the goal of the player. For example, the measure ¢
(representing the first player) measures approxi-
mation accuracy in the classification system. The
strategy for this particular player would be along
the lines of “acquire a maximal value for approxi-
mation accuracy as possible”. Likewise, the strate-
gy for ¢ would be to “acquire a maximal value for
approximation precision as possible”. The actions
in each strategy set, when performed. should be a-
ble to fulfill the player’s goals of finding optimal
values.

Approximation accuracy ($), is the ratio meas-
ured between the size of the lower approximation
of a set A to the upper approximation of a set A .
A large value of ¢ indicates that we have a small
boundary region.

To illustrate the change in approximation accu-
racy. suppose we have player ¢ taking two turns in

the competition. For the first turn, it executes ac-
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tion a, from it’ s strategy set. When it is time to
perform another turn, the player executes action
a,. Ultimately, since the player’s goal is to in-
crease approximation accuracy, we should measure
that 95[11 <¢“2' If this is not the case (¢“1 >¢u2 ), the
player has chosen a poor second action from it’s
strategy set.

The second player, approximation precision
(¢)» observes the relationship between the upper
approximation and a set. In order to increase preci-
sion, we need to make |apr(A)| as large as possi-
ble. For non-deterministic approximations, Yao
[ 7] suggested an alternative precision measure.

In general, the two measures measure the im-
pact that the loss functions have on the classifica-
tion ability of the DTRS model. Modifying the loss
functions contribute to a change in risk (expected
cost). Determining how to modify the loss func-
tions to achieve different classification abilities re-

quires a set of risk modification strategies.
3.3 Strategy formulation

The second step is to formulate strategies for
each player in the game. We wish to emphasize the
relationship between the condition risk and the loss
functions. In order to increase accuracy, we need
to make |apr(A)|. as large as possible while main-
taining the size of |apr(A)|. Recalling rules (PN,
NN, BN), we see that in order to increase the size
of the lower approximation, we need decrease the
expected loss Rp. This results in more objects be-
ing classified into the positive region. An increase
Ry and Ry is also desired. This is intuitive when
considering that in order for more objects to be
classified into POS(A), we need to lower the risk
involved in classifying an object into this region.

We see that in order to decrease the value of Ry,
we need to decrease one or both of the loss func-
tions App and Apy (Equation 1). Likewise, to in-
crease Ry, we need to increase either Axp or Any.
Finally, to increase Ry, we need to increase App OT
Asn. This is summarized in Tab. 2.

Tab.2 Strategy scenario of increasing

approximation accuracy

For the second player, ¢, we need to increase
approximation precision. For the deterministic
case, in order to increase precision, we need to
make |apr(A) | as large as possible. Again, re-
calling rules (PN, NN, BN), we see that in order
to increase the size of the lower approximation, we
need to decrease the expected loss Rp and to in-
crease Ry and Ry. It has the same strategy set as
the first player because we wish to increase the size
of the lower approximation. To do this, we need
to decrease the risk of classifying an object into the
positive region.

In order to increase precision in the non-deter-
ministic case, we need to make |apr(A)| as small
as possible. Recalling rules (PN, NN, BN), we
see that in order to decrease the size of the upper
approximation, we need to decrease the expected
loss Ry and to increase Rp and Rg. This effectively
makes classifying objects into the negative region a
lower risk endeavour.

To decrease Ry, we decrease the loss functions
Awp and Ann. Likewise, to increase Ry, we increase
either App or Apy. Finally, to increase Ry, we need
to increase Agp Or Agy. This strategy set is summa-
rized in Tab. 3.

Tab. 3 Strategy scenario for non-deterministic

approximation accuracy

Action

(Strategy) Goal Method Result

a1 (—Rx)  Decrease Ry Decrease Axp or Axn Larger NEG region
a; (+Rp) Increase Rp Increase App or Apn Smaller POS region
a3 (+Rp) Increase Ry Increase App or Agpn Smaller BND region

Action

Goal Method Result
(Strategy)
a1 (—Rp) Decrease Rp  Decrease App or Apn Larger POS region
a;(+RN)  Increase Ry Increase Anp or Any Smaller NEG region
as; (+Rp) Increase Ry Increase App or Agpy Smaller BND region

3.4 Payoff measurement

The third step is to define the payoff functions
that measure the effectiveness of the actions per-
formed by each player. Payoff, or utility, results
from a player performing an action. For a particu-
lar payoff for player i performing action «a;, the u-
tility is defined as the following,

iy =pla;) (6)

A set of payoff functions F contains all x func-
tions acting within the game G. In this system of
accuracy and precision, F={y,u,}, showing pay-
off functions that measure the increase in accuracy
and precision. A formulated game typically has a
set of payoffs for each player,

Pi= s s ption ) )

where the player i has m total actions in their



R MR ALK S A M CARBRERO

%20 %

strategy set. In this article, we will define the pay-
offs within the competition table (discussed in the
next section) for ¢ as ¢, ; and the ¢ payolfs as ¢,.;.
In our approach, given a strategy set S containing
three strategies, the payoffs for ¢ and ¢ are as fol-
lows,

Pir={¢1:12:b5)

Po={gu1s¢sdns) (8
reflecting payoffs from the result of the three ac-
tions pertaining to the three strategies undertaken
by each player, i.e. ,pu(a;) =¢;;. This is a simple
approach that can be expanded to reflect true caus-
al utility based on the opposing player’s actions.
This means that not only is an action’s payoff de-
pendant on the player’ s action, but also which
strategy the opposing player has chosen.

After modifying the respective loss functions,
the function gy calculates the payoff via approxima-
tion accuracy. Likewise, the payoff function y, cal-
culates the payoff with approximation precision for
deterministic approximations. More elaborate pay-
off functions could be used to measure the state of
a game G, including entropy or other meaningful
measures according to the player” s overall goals
[11].

The payoff functions imply that there are rela-
tionships between the measures selected as play-
ers, the actions they perform, and the probabilities
used for region classification. These properties can
be used to formulate guidelines regarding the a-
mount of flexibility the user’s loss function can
have to maintain a certain level of consistency in
the data analysis. As we see in the next section,
the payoffs are organized into a payoff table in or-

der to perform analysis.
3.5 Competition implementation

The fourth step is to express the game consisting
of players, strategies, and payoffs in a payoff table
structure. To find optimal solutions to either ¢ or
¢Cor both), we organize payoffs with the corre-
sponding actions that are performed. Since we are
considering both deterministic and non-determinis-
tic approximations, we must construct two payoff
tables. The first, for deterministic approxima-
tions, is shown in Tab. 4, and will be the focus of
our attention. For non-deterministic approxima-

tions, a new strategy set would be required for

precision.

The actions belonging to ¢ are shown row-wise,
whereas the strategy set belonging to ¢ are shown
column-wise. In Tab. 4, the strategy set S, for ¢
contains three strategies S, ={—Rp, + Ry, + Ry}
pertaining to actions resulting in a decrease in ex-
pected cost for classifying an object into the posi-
tive region and an increase in expected cost for
classifying objects into the negative and boundary
regions. The strategy set for ¢ contains the same
actions for the second player.

Each cell in the table has a payoff pair (¢,
¢2.;7. In this system, a total of 9 payoff pairs are
calculated. For example, the payoff pair (¢;,,
¢s.1) containing payoffs ¢;; and ¢;., correspond to
modifying loss functions to increase the risk associ-
ated with classifying an object into the boundary
region and to decrease the expected cost associated
with classifying an object into the positive region.
Measures pertaining to accuracy and precision after
the resulting actions are performed for all 9 cases.
These payoff calculations populate the table with

payoffs so that equilibrium analysis can be per-

formed.
Tab.4 Payoff table for ¢,y payoff
calculation (deterministic)
¢n
—Rp +Rx +Rgp
—Rp (Brasgna? (Pr.2agna? (Prasgsa?
$ Ry (Boiegnd (brr oo (hrs o)
+Rg ($3.15¢n.3) ($3.2 v .3 ($3.3+¢a.3)

In order to find optimal solutions for either accu-
racy or precision, we determine whether there is e-
quilibrium within the payoff table. This intuitively
means that both players attempt to maximize their
payoffs given the other player’s chosen action, and
once found, cannot rationally increase this payoff.

It follows that if an equilibrium is found within
the table, i. e. , one or more payoff pairs (¢;,,¢s ;>
are calculated, where for any action a, where k41,
Jb i =% and ., =¢,., is a optimal solution for
determining loss functions. Thus, once an optimal
payoff pair is found, the user of the system is pro-
vided with the following information: a suggested
tolerance level for the loss functions and the a-
mount of change in accuracy and precision resulting
from the changed loss functions. Equilibrium is a

solution to the amount of change loss functions can
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undergo to achieve levels of accuracy and precision

noted by the payoffs.
3.6 Results acquisition

The final step is to interpret the results from the
observations made on the execution of the game.
Observed from decision rules (PN, NN, BN), we
can calculate how much the loss functions need to
be modified to acquire a certain level of accuracy or
precision. There is a limit to amount of change al-
lowable for loss functions. For example, the action
of reducing the expected cost Rp. We can reduce
this cost any amount and rule (PN) will be satis-
fied. However, the rules (NN) and (BN) are also
affected by the modified Rp, denoted Ry . Ry must
satisfy Ry =(Ry—Rp) and Ry =(Ry;—Rp). This
results in an allowable change of tpp to App and py
to Apy.

Assuming that App <App <Axp and Ay <<Apnx<Apy »
we calculate the following,

[g\f)xx — ABP 7 APP , tr}?{‘]x — A1”N 7 ABN‘ (9)

App Apx

That is, }3* is the tolerance that loss function
App can have (P Apy for Apy). Tolerance values in-
dicate how much change a user can have to their
risk beliefs (loss functions) in order to maintain
accuracy and precision measures of (¢ ;,¢y ;). In
brief, when selecting a strategy, i.e. (+Rp), the
game calculates payoffs by measuring the approxi-
mation accuracy and prediction that result from
modifying the loss functions App and Apy. The new
loss functions, App and Apy are used to calculate a
new expected loss Rp. In order to maintain the
levels of accuracy and prediction stated in the pay-
offs, the user must have new loss functions within

min

the levels of 55" for App and BN for Apy.
3.7 An example

Let the following be a series of loss functions for
correct classifications, boundary classifications,

and incorrect classifications respectively:

App = A =4,
App = Apy =65
)\PN:>\,N'I):8. (10)

The inequality restrictions for the loss functions
hold, 1. e. s App<<App<<Axp and Ay <Ay <<Apy. The
cost of a correct classification (App and Axy) is less
then the cost for classifying an object into the

boundary region (A and Agy) and both are strictly

less than the cost of an incorrect classification (Apy
and ANP)-
Using Equation (9), we calculate the following:

m:nxi674i]‘
fpp *T*?s
8—6 1

min

Lpx 3 1
thus, 5 =0.5 and 5% = 0. 25. This means that
we can increase the loss function App by 50% and
increase the loss function Apy by 25% and maintain
the same classification ability.

These tolerance values can now be used to modify the
expected loss strategies of the game. Recalling the strat-
egies in Tab. 2, we use the tolerance values to calculate
how much we can decrease Rp and increase Ry and Ry in
order to increase approximation accuracy. Likewise,
from Tab. 3, we can use the tolerance value to calculate

how much to decrease Ry and increase Rp and Rj.

4 Conclusions

This article provides some insights regarding the use
of game theory to aid the rough set analysis process.
Specifically, we provide a preliminary study on using
game theory for determining the relationships between
loss tolerance, expected loss, and threshold value modi-
fication in the decision-theoretic approach. We achieve
this by formulating the process of loss function modifica-
tion as goals to be achieved in a competitive environ-
ment. By choosing measures of approximation accuracy
and approximation precision as players in a game, with
individual goals of maximizing their values, we set up a
set of strategies that each can perform.

In the game-theoretic approach, we investigate the
possibility that a change in values for expected losses for
classifying objects can be thought of as actions being
performed by a player in a game. The strategies involve
decreasing or increasing the user-provided loss functions
for classifying objects into rough set regions. Taking in-
to account the actions that are used to modify the loss
functions to achieve new accuracy and precision meas-
urements, we can indicate how much a loss function can
be modified. This is useful for the users as determining
the amount of tolerance they should have when modif-
ying loss functions (risk tolerance) is difficult.

Analyzing the payoff tables indicates a relationship be-
tween the two measures and the actions performed to
reach those values. By undertaking these risk modifica-

tion actions, new values of the thresholds can be calcu-
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lated to reflect balanced classification ability. We con-
clude that game theory can be a powerful method for
governing rough set analysis when adjustable criteria,
such as loss functions, are used to influence classifica-

tion ability.
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