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Abstract. Self-Organizing Maps (SOM) is a powerful tool for cluster-
ing and discovering patterns in data. Competitive learning in the SOM
training process focusses on finding a neuron that is most similar to that
of an input vector. Since an update of a neuron only benefits part of the
feature map, it can be thought of as a local optimization problem. The
ability to move away from a local optimization model into a global op-
timization model requires the use of game theory techniques to analyze
overall quality of the SOM. A new algorithm GTSOM is introduced to
take into account cluster quality measurements and dynamically modify
learning rates to ensure improved quality through successive iterations.

1 Introduction

Self-Organizing Maps (SOM), introduced by Kohonen [1], is an approach to
clustering similar patterns found within data [2, 3]. Used primarily to cluster
attribute data for pattern recognition, SOMs offer a robust model with many
configurable aspects to suit many different applications.

The training of a SOM does not take into consideration certain advantages
that could be obtained if multiple measures were used in deciding which neuron
to update. Recent research that makes use of dynamic adaptive and structure-
adaptive techniques have been proposed [4, 5]. Game theory offers techniques for
formulating competition between parties that wish to reach an optimal position.
By defining competitive learning in terms of finding a neuron that can perform
an action that will improve not only its own position, but also the entire SOM,
we may be able to improve the quality of clusters and increase the efficiency
of the entire process, moving towards a global optimization process from local
optimization found in traditional SOM methods.

This article proposes a new algorithm GTSOM that utilize aspects of game
theory. This allows for global optimization of the feature map. This technique
could be used to ensure that competitive learning results in the modification of
neurons that are truly suitable for improving the training results.



Fig. 1. The layers of a SOM during the training process.

2 A Brief Review of Self-Organizing Maps

At the heart of SOM theory is the concept of creating artificial neurons that are
computational duplicates of biological neurons within the human brain [6]. Arti-
ficial neural networks follow the model of their biological counterparts. A SOM
consists of neurons with weight vectors. Weight vectors are adjusted according
to a learning rate α that is decreased over time to allow for fast, vague training
in the beginning and specific, accurate training during the remaining runtime.

A SOM model contains three fundamental procedures that are required in
order to discover clusters of data. These procedures are similar to that of the
knowledge discovery in database process [7, 8]. The first procedure consists of
all preprocessing tasks that are required to be completed before training can
take place. This includes initializing the weights vectors of each neuron either
randomly or by some other method [9, 10]. Another task to be performed is that
of input vector creation. Training data for the SOM must be arranged in input
vectors, where each vector represents a tuple in an information system or other
similarly organized data set.

2.1 SOM Training

In order for a SOM to cluster data, it must be trained with suitable training
data. Training a SOM requires the combination of three layers that work in
tandem, where an output of one layer is treated as the input to the next layer,
as shown in Figure 1.

The first layer, denoted as the input layer, consists of a data store to be
formatted into a set of input vectors P . An input vector represents a tuple
within the data set. Each input vector p ∈ P is used as input for the next layer
of a SOM. The second layer, denoted as the competition layer, manages the
competitive learning methods within the SOM [11]. This layer determines which
neuron ni has a weight vector wi with minimum distance (maximum similarity)
to p. From this layer, a winning neuron n∗i is marked to be updated in the third
layer. The third layer, denoted as the update layer, updates the weight vector
associated with the winning neuron that was used as input. After the updating
of the neuron, the weight vector is more attuned to that of the input vector.



Data: A set of m input vectors P = {p1, . . . , pm}
Input: A threshold qm for maximum iterations to be executed.
Output: A feature map A′

for each neuron ni ∈ W do1

initialize wi randomly ;2

end3

while (q ≤ qm) or (∀ pk ∈ P, n∗i (q) = n∗i (q − 1)) do4

αq = adjusted αq−1 for iteration q ;5

dq = adjusted dq−1 for iteration q ;6

for each pk ∈ P do7

n∗i (q) = Compet(pk, W ) ;8

Update w(n∗i (q), pk, αq) ;9

Update N(Nn∗
i
(q)(dq), pk, αq) ;10

end11

end12

Algorithm 1: The SOM Training Method

A data set P contains individual tuples of an information system trans-
lated into input vectors, P = {p1, . . . , pm}. A set of artificial neurons, W =
{n1, . . . , nn}, is arranged in a grid-like topology of fixed dimensionality. Each
neuron in W has a weight vector wi of the same dimensionality as the input
vectors pj .

Each neuron ni ∈ W has a set of neurons whose proximity is within that
defined by d, a scalar whose value is changed according to an iteration q. There-
fore, for each neuron ni, the neighborhood Ni(d) = {nr, . . . , ns} consists of all
neurons that have connectivity to ni within distance d. The learning rate is used
as a scalar that determines how much a weight vector wi is changed to become
more similar to that of the current input vector.

2.2 Competitive Learning in SOM

To find a neuron ni ∈ W that has a weight vector closest to pk, similarity
measures [12] are observed between each neuron and the input vector.

Once a winning neuron n∗i has been identified, the weight vector must be up-
dated according to the learning rate αq corresponding to iteration q. In addition,
the neighborhood of that neuron must be updated so that neurons connected to
the winner reflect continued similarity to the new information presented to the
network. In Algorithm 1, this process is done with functions Update w and Up-
date N, functions that update the winning neuron and its neighborhood respec-
tively. The update of a winning neuron and the update of the winning neuron’s
neighborhood is shown in Equation 1 and Equation 2 respectively. Equation 1
is known as the Kohonen rule [6].

w∗
i (q) = w∗

i (q − 1) + α(pk(q)−w∗
i (q − 1)) . (1)

wNi∗ (d)(q) = wNi∗ (d)(q − 1) + α′(pk(q)−wNi∗ (d)(q − 1)) . (2)



The modified learning rate α′ denotes a smaller learning rate that is used on the
neurons in Ni∗(d). We wish to use a smaller learning rate to signify that although
these neurons did not win the competition for the input vector, they do have
some connectivity to the neuron that did. The learning rate α in Equation 1 is
derived from a decreasing polynomial formula [13].

Algorithm 1 shows the steps taken to train the SOM. The process of updating
a neuron and its neighbors can be thought of as a local optimization procedure.
For any given input vector, the update layer in Figure 1 only adjusts neurons
based on a very small instance of the overall patterns in the full data set.

3 Incorporating Game Theory into SOM Training

Although individual neurons have the ability to improve their situation during
each competition, a collective goal for the entire SOM is not considered. The
transition between local optimization techniques to those of global optimization
must occur in order to solve problems of density mismatch and physical adja-
cency errors. The concept of overall SOM quality must be defined in order to
progress to a state in which properties between overall neuron relationships and
input vectors can be measured.

3.1 Measuring SOM Quality

The competitive layer in the traditional SOM model does not have the ability
to find a neuron which best represents the current input vector as well as having
the ability to improve the quality of neuron placement and density. Improving
quality in a SOM could include an increased ability to create and define better
clusters. In order to determine the quality of a SOM, definitions on what is
considered a high-quality cluster must be discovered. Clusters can be defined in
two ways: by the actual input data that was used to adjust the weight vectors
or by the neurons associated with that data.

With the two abilities to define clusters, two methods of representing clusters
arise. A centroid vector can be used as a representation of the cluster. This vector
could be calculated by taking the average of all weight vectors that the cluster
includes. Second, a neuron whose weight vector is most similar to that of the
average weight vector of all neurons could be given representation status. In
addition to the two methods of representing clusters in a SOM, two methods
can be used in order to find a neuron required in the latter method:

1. If a centroid input vector for a cluster is known, we can simply discover
which neuron that centroid input vector is most similar to.

2. If we wish for the calculations of centroid to be strictly neuron based, we
can find groups of neurons and determine which of those neurons have won
more competitions.

The above methods allow us to measure the overall quality of a SOM. Using
the ability to calculate physical distance between clusters on the feature map as



well as the ability to calculate the density of a particular cluster can enable a
new algorithm to determine which neuron is best suited to be updated. These
quality measures can be used together to see how much a particular neuron, if
updated, can improve the overall quality of the feature map.

3.2 Game Theory

In order to facilitate global optimization techniques in competitive learning, a
method must be employed that can take into consideration possible improve-
ments of overall SOM quality. Game theory provides a suitable infrastructure
to determine which neurons provide the best increase in feature map quality.
By manipulating the learning rate applied to both the winning neuron and its
neighbors, as well as the size of a neighborhood that should be taken into con-
sideration, a set of strategies with expected payoffs can be calculated.

Game theory, introduced by von Neumann and Morgenstern [14], has been
used successfully in many areas, including economics [15, 16], networking [17],
and cryptography [18, 19]. Game theory offers a powerful framework for organiz-
ing neurons and to determine which neuron may provide the greatest increase
in overall SOM quality.

In a simple game put into formulation, a set of players O = {o1, . . . , on}, a set
of actions S = {a1, . . . , am} for each player, and the respective payoff functions
for each action F = {µ1, . . . , µm} are observed from the governing rules of the
game. Each player chooses actions from S to be performed according to expected
payoff from F , usually some ai maximizing payoff µi(ai) while minimizing other
player’s payoff. A payoff table is created in order to formulate certain payoffs for
player strategies, which is shown in Table 1.

3.3 Game-Theoretic Competitive Learning in SOM

With the ability to precisely define neuron clusters within a SOM, measures
can be used in order to define overall quality of the network. These measures,
such as the size of clusters, the distance between clusters, and the appropriate
cluster size to represent input can be combined to give a certain payoff value to
a particular neuron, if chosen as a winner. When the competitive phase begins,
a ranking can be associated with each neuron according to its distance from

n∗j (q)
aj,1 . . . aj,r

ai,1 < µi,1, µj,1 > . . . < µi,1, µj,r >

n∗i (q)
...

... . . .
...

ai,r < µi,r, µj,1 > . . . < µi,r, µj,r >

Table 1. Payoff table created by second Competition layer.



the input vector. Using the ranked list of neurons, a new competition layer is
constructed in order to determine which neuron and which strategy or action
should be taken. This new model architecture is shown in Figure 2.

The first Competition layer is modified so that instead of determining which
neuron is most similar to the current input vector, the layer now ranks neurons
according to each similarity measure obtained. There is an opportunity here to
include a dynamic, user-defined threshold value t1 that can deter any neurons
that are beyond a certain similarity measure to be included in the ranked set as
shown in Equation 3 and Equation 4:

W ′ = {n∗1(q), . . . , n∗n(q)} , (3)

where ∀n∗i (q) ∈ W ,

|w∗
i (q)− pi| ≤ t1 , (4)

and 1 ≤ i ≤ n. This allows the user to specify a degree of minimum similarity
desired when having the first competition layer computing which neurons should
enter the second competition layer.

Once a ranked set of neurons has been created, the second competition layer
starts to create competition tables of the form shown in Table 1. A neuron n∗i
with possible actions S = {ai,1, . . . , ai,r} and payoffs calculated from correspond-
ing utility functions U = {µi,1, . . . , µi,r} competes against neuron n∗j with the
same action and utility sets. The neuron whose specific action ai,k results in the
greatest overall SOM quality is chosen to be the winner.

With the addition of quality measures, neurons are now ranked in partial
order. For example, a particular neuron n∗i may have a higher ranking than n∗j in
terms of a particular similarity measure between itself and the input vector, but
the neuron may not have that same ranking when additional quality measures are
taken into account. The second competition layer must take into consideration
not only similarity to input, but also how much each neuron can increase or
decrease feature map quality. Many different ranking of neurons in W ′ may
occur when more than one measure is used.

There are two possible ways of creating tables to govern the second phase
of competition. First, neurons can be initially paired randomly with each other.

Fig. 2. The layers of GTSOM including the addition of another competition layer used
during the training process.



Victors of each “round” move on to the next round, where new tables are created
for the neurons that have been awarded victories. This process proceeds until a
total victory is declared for one neuron. Second, for a set W = {n∗1(q), . . . , n∗n(q)}
of ranked neurons, an n-dimensional payoff table can be created. With n neurons
ranked and entering competition, each with r possible actions, a total of rn cells
must be observed to determine which neuron gives the best quality or utility
value for this iteration.

3.4 A Strategy to Adjust the Learning Rate

Actions performed by a particular neuron could possibly include parameters
such as adjustable learning rates or adjust neighborhood size. Such actions can
be called strategies to describe an action that can be modified in order to create
new actions. A strategy of adjust the learning rate α can be modified so that
there is an action for an increased adjustment, decreased adjustment, and a no-
change scenario. This strategy can improve clusters by forcing subsequent input
vectors that are similar to the current input to have a greater possibility to be
more similar to a different neuron than it did on a previous iteration in the case
of an increased learning rate. That is, the input vector will have an increased
likelihood to be closer to a different neuron next iteration. A decreased learning
rate will result in a diminished similarity adjustment between the victor and the
current input vector, resulting in negligible change from subsequent iterations.

A set of actions detailing neighborhood size for a particular neuron is useful
when cluster sizes are desired to either grow or diminish. An increased neighbor-
hood size will modify a larger number of neurons to become more similar to the
current input vector. This may result in less dense clusters if desired. In contrast,
a decreased neighborhood size could have an exact opposite effect, decreasing
the size and increasing the density of clusters. If clusters are too far apart, the
density of a particular cluster could be dismissed so that cluster boundaries be-
come closer. Also, if clusters are too compact, the density of some clusters could
be increased in order to increase distance between centroids.

4 GTSOM Implementation

The process of ranking neurons according to similarity, creating payoff tables,
and determining winning neurons is introduced in Algorithm 2. Training will
stop when either of the following three conditions are met on line 4.

1. If a maximum number of specified iterations have been performed.
2. If no neurons have won competitions for new input vectors that were not

won before during previous iterations.
3. If the overall quality of the SOM has reached or moved beyond that of a

user-defined threshold.

A traditional SOM stops when the first two stopping conditions are met. With
the addition of the third condition, training time may be reduced if a certain



Data: A set of m input vectors P = {p1, . . . , pm}
Input: A threshold qm for maximum iterations to be executed.
Output: A feature map A′

for each neuron ni ∈ W do1

Initialize wi randomly ;2

end3

while (q ≤ qm) or (∀ pi ∈ P, n∗i (q) = n∗i (q − 1)) or (µ(A) ≥ t2) do4

αq = adjusted αq−1 for iteration q ;5

dq = adjusted dq−1 for iteration q // neighborhood distance ;6

for each pk ∈ P do7

Find set W ′ = {n∗1(q), . . . , n∗n(q)} ;8

for each < n∗i (q), n
∗
j (q) > pair in W ′ do9

Ti,j = (N, Si,j , Fi,j), where10

N = {n∗i (q), n∗j (q)},11

Si,j =set of actions for n∗i (q) and n∗j (q),12

Fi,j =set of utility functions returning quality of A.13

αq = ±a∗i , where a∗i =the action that best improves A. ;14

end15

Choose n∗q(pi) whose utility function µi has maximum payoff action ai ;16

Update w(n∗i (q), pk, αq) // update winning neuron ;17

Update N(Nn∗
i
(q)(dq), pk, αq) // update neighborhood of n∗ ;18

end19

end20

Algorithm 2: The Training Method GTSOM

quality has been reached. For example, if the desired quality of the feature map
has been reached before qm iterations have been performed, training may stop
ahead of schedule. This threshold may correlate with the number of iterations
that are to be performed or it may represent the desired precision of weight
vectors belonging to individual neurons. A lower threshold will most likely result
in a lower number of iterations performed. As precision increases with respect
to the number of iterations performed (smaller learning rate), a lower number
of iterations will result in the algorithm completing with a learning rate above
that of the final desired learning rate.

Lines 7-19 iterate the first and second competition layers for every input
vector in P . Line 8, executing the first competition layer, creates a set of ranked
neurons according to their similarity to the input vector. The third embedded
repetitive structure ranks neurons according to their similarity to the current
input vector. An interesting opportunity arises here when clusters are starting
to be defined. There may be an option to include centroid neurons in this set once
they have been discovered. This leads to the eventuality that no new clusters will
be formed. Another user-defined threshold could be specified if this method is
used, comparable to the maximum number of clusters desired. This also decreases
the number of distance measures to be calculated between the neuron weight
vectors and the current input vector.



The second competition layer is shown in lines 9-15. Using the set of ranked
neurons, tables are created for each neuron pair within W ′. This table Ti,j =
(N, Si,j , Fi,j), the payoff table for neurons ni and nj , includes the neurons them-
selves, a set containing actions Si and Sj for the neurons, and a set containing
utility functions Fi and Fj that returns the quality of the feature map given ac-
tion ai ∈ Si and aj ∈ Sj . Once these tables have been created, the neuron with
the action that provides the greatest increase in feature map quality through
the utility function is chosen as the final winner in the competition process. The
action is executed (learning rate modification or neighborhood size) and update
procedures are performed.

A large value for t1 may result in increased computation time as it will result
in a larger W ′. Since tables are created and observed for each distinct pair of
neurons within W ′, the similarity threshold must be considered carefully. A value
too small for t1 may result in incomplete competition, where neurons that may
offer valuable actions could be ignored based on their dissimilarity to the current
input vector.

The threshold t2 found on line 4 gives the option of stopping the training
process when a certain overall SOM quality has been reached. Too high of a
threshold, although perhaps representing a high quality preference, may result in
no computational efficiency improvement. This threshold may never be reached
before maximum iterations have occurred. Too low of a threshold could result in
too few iterations being performed. Since the learning rate α is adjusted during
each iteration, it may not get an opportunity to become sufficiently small for
precise weight vector updating.

5 Conclusion

We have proposed a new approach to competitive learning in SOMs. The op-
portunity to create a model to facilitate global optimization of the feature map
requires methods to acquire the overall quality of the feature map. These meth-
ods take the form of measuring distance between clusters, cluster density and
cluster size.

An additional competitive layer has been added to the traditional SOM model
as well as modifying the original competition that results in the proposed GT-
SOM algorithm. A similarity ranking within a user-defined threshold between
neuron weight vectors and input vectors is used as a basis for the creation of
payoff tables between neurons. Payoffs are calculated according to strategy set
containing possible actions for each neuron. Each action results in a numeric
utility or payoff which may improve or diminish SOM quality. Finding the neu-
ron whose action maximizes the quality of the SOM for that iteration is now
possible, enabling neurons to be picked not only on similarity but on strength.
Clusters can be increased or decreased in size or density in order to attempt
to reach a user-defined threshold for overall desired quality of the SOM. Future
research will focus on training result analysis between the traditional SOFM
training method and the proposed GTSOFM training algorithm.
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