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Abstract— Many information retrieval and machine learning
methods have not evolved in order to be applied to the Web. Two
main problems in applying some machine learning techniques
for Web mining are the dynamic and ever-changing nature of
Web data and the sheer size of possible dimensions that this
data could portray. One such technique, self-organizing maps
(SOMs), have been enhanced to deal with these two problems
individually. The growing hierarchical self-organizing map can
adapt to the dynamic data present on the Web by changing
its topology according to the amount of change in input size. In
addition, it reduces local dimensionality by splitting features into
levels. We extend this model by including bidirectional update
propagation over the levels of the hierarchy. We demonstrate
the effectiveness of the new approach with a Web-based news
coverage example.

I. INTRODUCTION

Knowledge discovery over the Web, or Web mining, is
divided into three domains of study: Web content mining,
Web usage mining, and Web structure mining [7]. These areas
utilize many traditional information retrieval (IR) and data
mining techniques [5], [9], [14] in the Web domain.

Self-organizing maps (SOMs) [6] are an approach to dis-
covering similar patterns found within vector data [4]. Used to
cluster attribute data for pattern recognition, the SOM model
has many configurable aspects to suit different applications.

The self-organizing map is somewhat capable of performing
knowledge discovery on the Web. Some SOM applications to
Web content mining (deriving useful information from Web
pages) include Web page and document clustering and docu-
ment retrieval [2], [8]. A recommendation system using SOM
clusters [15] is an application to Web usage mining (deriving
information regarding a set of Web users’ characteristics).

Although the above research has had some exposure, there
are still problems that should be solved in order for the full
potential of SOMs is realized. The first problem is the dynamic
nature of Web data. In order to adequately classify data and
give a low dimensional view of high dimensional data, the
SOM must be trained on a finite data set that represents future
data to be used. The growing self-organizing map, proposed
by Villmann et al [13], analyzes the current collection of
neurons and determines if dimensions are needed to be added
or subtracted in order to improve the entire network’s ability
to classify data.

The second problem facing SOMs is that of high dimen-
sionality of features. The Web is a vastly immense collection
of documents. It is near impossible to have input vectors
that contain all possible features. Hierarchical self-organizing
maps [12] is a different approach to reducing the search space.
Classification is performed on a level-by-level basis.

Seeing a need for an integrated approach, the growing
hierarchical self-organizing map [1], [10] was proposed to
take advantage of the benefits that the individual growing and
hierarchical methods offered. However, it is unable to reflect
changes to preserve the hierarchical relationships between
levels. We extend this method by introducing bidirectional
propagation of neuron updates over multiple hierarchy levels.
This ensures that new information is correctly represented
throughout the entire system. We look at how this approach
is suitable for Web mining by looking at a Web-based news
coverage example.

II. WEB MINING MODEL FOR SELF-ORGANIZING MAPS

This section introduces new extensions to the growing
hierarchical self-organizing map. The extensions incorporates
previous ideas of growing SOMs and integrates them with a
level-wise updatable hierarchical SOM model, or bidirectional
propagation of updates.

A. Feature Map Specification

There are four total layers in the model, shown visually
in Figure 1. Once input has been presented to the network
through the Input Layer, a suitable level in the hierarchy
of SOMs is found. That is, a level whose neurons have a
collectively maximum similarity to the input. This SOM is
then passed on to the Growth Layer which determines whether
additional neurons need to be added or existing neurons need
to be removed. Once a suitable neuron has been chosen, it
is passed on to the Update Layer updates the corresponding
neuron and its neighbourhood, as well as level-wise updates
to parents and children within the hierarchy.

A growing hierarchical SOM is formally defined as a
set of hierarchy levels A = {A1, . . . , At}, where Ai =
{Wi,1, . . . ,Wi,m} is a set of SOMs. Let Wi,j = {w1, . . . , wn}
be a SOM with n neurons. For each wk ∈ Wi,j , it contains a
storage unit sk and a weight vector vk. Therefore, each neuron
has the structure wk = {vk, sk}. There are also three functions
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Fig. 1. The growing hierarchical self-organizing map model for Web mining.

that are introduced. The Lev( ) function returns the hierarchy
level that a SOM currently resides on. The functions Par( )
and Chd( ) take neurons as arguments are return the parent
SOM and set of children SOMs respectively.

Each hierarchy level A contains at least one SOM W . At
the top-most hierarchy level, A1 would contain exactly one
SOM. This map contains the absolute highest concept view of
the entire hierarchical structure. The second hierarchy level,
denoted A2, potentially contains multiple SOMs. For example,
let A2 = {W2,1,W2,2,W2,3,W2,4} be the second level in the
hierarchy with four individual SOMs. Additional SOMs on
subsequently lower hierarchies are denoted by the sequence of
parent SOMs, i.e. W2,6,4 denotes that this map is the fourth
such map on the third level of the hierarchy (A2) derived from
the sixth map on the previous level.

The hierarchical structure of the growing hierarchical SOM
allows it to determine which feature map would best describe a
relationship between a subset of inputs. Starting at the highest
level in the hierarchy (root), we descend the structure to find
a neuron whose weight vector is closest to the input vector.
If the error rate is sufficient between the neurons and input
at this level, we update the neuron and its neighborhood.
We propagate the updates downwards and upwards in the
hierarchy. However, if there exists a neuron a subsequent level
that has a better error value, we should proceed to that level
and start the process over again, finding a new neuron. We
continue this process until we find the neuron whose weight
vector has the lowest error between itself and the input.

The growing methods allow the topology of a single feature
map to change according to new information. The error rate ε
is accumulated for a particular winning neuron. If it is above
an upper-bound error threshold εu, there is an insufficient
amount of neurons representing that concept in current feature
map. Therefore, a neuron is added to the outer edge of the
concept cluster, with weight vectors initialized accordingly.
In contrast, if the measured error rate is below a lower-bound
error threshold εl, a neuron may be removed from the network.

The actual error rate measured from the winning neuron,
εA, is defined as εl < εA < εu. If εA < εl, the SOM
representation of input is an overfit. Likewise, if εu < εA,
the SOM representation of input is an underfit.

When calculating the error, the number of “victories” a
neuron has achieved must be gathered. Additional storage
for the number of victories it has achieved is requried. This
enables the system to calculate the popularity of a particular
cluster or concept area is within a SOM.

B. Learning of Features through Bidirectional Propagation

A SOM must be trained on a subset of data before the map
is considered applicable. To find the neuron wi ∈ W that has
a weight vector closest to pk, similarity measures [11] are
observed between each neuron and the input vector. A neuron
w∗

i is marked as the winner for input vector pk if it has the
highest similarity value to the input vector.

Once a winning neuron has been identified, its weight vector
must be updated according to the learning rate α. The value of
α decays over time according to an iteration q. This ensures
that the system learns features quickly at the beginning of
a session and progressively moves towards precise learning
as training continues. This process is done by computing the
Kohonen rule [6], shown in Equation (1),

v∗i (q) = v∗i (q − 1) + α(pk(q) − v∗i (q − 1)). (1)

The weight vector for the winning neuron w∗
i (denoted by the

asterisk) at iteration q is equal to the original weight vector
at iteration (q − 1) plus the α-scaled difference between the
current input vector pk and the original weight vector vk.

The neighbourhood must then be updated. The neighbour-
hood set is calculated around w∗

i according to the decaying
neighbourhood distance d. A modified learning rate α′ is
used on the neurons within the neighbourhood set Ni∗(d) [3],
shown in Equation (2),

vNi∗ (d)(q) = vNi∗ (d)(q − 1) +
α′(pk(q) − vNi∗ (d)(q − 1)). (2)

Each neuron wi ∈ W has a neighbourhood Ni(d) associated
with it, where each neuron’s proximity is within that defined
by d, a scalar value that is changed according to an iteration q.
For each neuron wi, the neighborhood Ni(d) = {wr, . . . , ws}
consists of all neurons that have connectivity to wi within
distance d. An iteration q is completed when all input vectors
have been introduced to the competition layer, a neuron
has been selected as the winner, and the update layer has
completed.

Utilizing ideas from both growing SOMs and hierarchical
SOMs, we introduce extensions to the growing hierarchical
SOM model suitable for Web Mining. With this model, high-
dimensional data prevalent throughout the Web are able to be
abstracted through a hierarchy of SOMs that offer high-level
views of feature subsets. The static training model from the
traditional SOM model is done away with in preference to the
dynamic nature of the growing SOM.

A new definition of a neuron is used in order to provide
links between hierarchies in a hierarchical SOM. For any given
neuron on hierarchy A2, there is a link to the parent hierarchy
A1 and a link to the child hierarchy A3.

Let w∗
i ∈ Wj,k be the winning neuron for input k. To prop-

agate updates to this neuron upwards in the hierarchical struc-
ture, we calculate Par(w∗

i )= Wj−1,m, where Lev(Wj−1,m) <
Lev(Wj,k). For all neurons wa ∈ Wj−1,m that are similar to
w∗

i , update the corresponding weight vectors,
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Fig. 2. The SOM hierarchy for the Online News Site.

Fig. 3. The process flow of the Web mining self-organizing map model.

v∗a(q) = v∗a(q − 1) + β(pk(q) − v∗a(q − 1)). (3)

To propagate updates downwards in the hierarchical structure,
we calculate Chd(w∗

i )= A∗
j+1, where A∗

j+1 ⊆ Aj+1 and j +1
signifies the next level in the hierarchy succeeding level j. For
all neurons wb ∈ Wj+1,t, where Wj+1,t ∈ A∗

j+1, update the
corresponding weight vectors,

v∗b (q) = v∗b (q − 1) + γ(pk(q) − v∗b (q − 1)). (4)

The learning rates β and γ are derived from a value of α.
Generally, updates to a parent neuron on hierarchy level j−1
are not as strong as updates to children neurons j + 1 for a
given neuron on level j. The relationship β < α < γ allows for
the propagation upwards and downwards to reflect the proper
weight vector magnitude change. The process flow of the
entire SOM model, which includes the sequential operation of
the hierarchical and growing operations, is shown in Figure 3.

III. WEB-BASED NEWS COVERAGE EXAMPLE

An example of how the extended growing hierarchical SOM
model can be used for Web content mining is shown here. An
online news site could make use of the hierarchical model to
organize news articles in a logical way. A news site has the
potential to push to the user thousands of articles pertaining
to many areas, such as global news, politics, technology, etc.

In order to use a SOM for this application, each news
document is preprocessed into a vector format that can be
presented to the feature map. Each component in the input
vector is an indication of how frequent a particular word occurs
in a news article. The term frequency (tf) measure is useful
for this purpose. These input vectors contain information
regarding the frequency of each word within the document.

For example, an input vector pk = {c1, c2, c3} has
three components (keywords). Let us say the keywords
{pharmaceutical, insurance, disease} are used to describe a
Health-related news document. Therefore, c2 is a measure of
how often the keyword insurance appears in document k. In
general, component ci is a tf-measure of the ith keyword in
news document k.

At the top-most level in the hierarchy, news articles per-
taining to high-level concepts are organized according to their
features. The entire collection of documents on the online
news site are presented through feature maps that abstract their
similarities. They are organized as the following equations and
presented as a hierarchy in Figure 2.

A1 = {W1},
A2 = {{W2,1}, {W2,2}, {W2,3}, {W2,4}, {W2,5},

{W2,6}, {W2,7}, {W2,8}, {W2,9}, {W2,10}},
A3 = {{W3,1,1,W3,1,2,W3,1,3,W3,1,4,W3,1,5},

{W3,2,1,W3,2,2},
{W3,3,1,W3,3,2,W3,3,3,W3,3,4,W3,3,5},
...
{W3,10,1,W3,10,2,W3,10,3}}, (5)

where W1 is the highest level map of the hierarchy, or
Lev(W1)= 1 . The individual maps W2,1, · · · ,W2,10 on the
second hierarchy level A2 are Web documents pertaining to
Global news, Local news, Politics, Business, Weather, Enter-
tainment, Technology, Sports, Opinions, Health respectively.



These maps can be derived by taking a neuron wi ∈ W1

and executing Chd(wi). Descending through the hierarchies
to the third level A3 reveals more SOMs. These are de-
rived from the previous higher level SOMs. The SOM set
{W3,10,1,W3,10,2,W3,10,3} contain individual SOMs relating
to specific sub-areas within Health, the parent concept repre-
sented in W2,10.

To illustrate the results of the Par() and Chd() functions, let
us look at a the hierarchy presented in Figure 2. For a neuron
wi ∈ W2,1, Par(wi)= W1 results in Lev(W1) < Lev(W2,1).
Likewise, for a neuron wi ∈ W2,1, we can execute Chd(wi)=
{W3,1,1, . . . ,W3,1,5}. If we let Ak = {W3,1,1, . . . ,W3,1,5},
we have Ak ⊆ A3, where Lev(W2,1) < Lev(W3,1,i).

The SOM W2,10 is presented in Figure 4. Clusters have
been labeled to show relationships to lower levels. The maps
W3,10,1, W3,10,2, and W3,10,3 are derived from their common
parent map W2,10. One of the key advantages of this hier-
archical structure is that as we descend through the levels,
more neurons are used to decrease the level of abstraction on
a particular topic. The map shown expands on the previous
8 neurons and organizes documents with 90 neurons. We can
see that more distinct similarities between documents can be
expressed as we increase the number of neurons. That is,
perhaps a subset of neurons in W2,10 relate to Health Research
Funding, further expanded in map W3,10,1. Additionally, the
26 neurons pointing to hierarchy map W3,10,2 pertain to Health
Outbreak Crises articles.

Fig. 4. The feature map W2,10 of hierarchy A2 shown in Figure 2. Clusters
with neurons that link to the next lowest level of the hierarchy are labeled.

When adding new articles, the input vector representation of
the article would be compared first the top-most feature map
using the tf-measures in the components. Descending through
the tree until a similarity measure has been maximized results
in finding the correct hierarchy to represent this document.
The neurons in the feature map would be updated to reflect
the addition of this article. For example, a new Health-related
article describing a recent outbreak in a country has been
received. Descending through our hierarchy, we find that it
should have representation in the SOM W3,10,2. The addition
of neurons in W3,10,2 to better reflect this crisis is performed.
This is shown by the addition of four neurons in the dashed
area in Figure 4.

IV. CONCLUSION

The extended growing hierarchical self-organizing map
model for Web mining introduced in this paper incorporates
the previous approaches that can help in minimizing the impact
of a training procedure and allowing for different levels of
abstraction to reduce feature vector dimensionality.

The Web-based news coverage example demonstrates the
strengths of this approach. The hierarchical structure of SOMs
can be used to classify Web documents with natural language
by reducing dimensionality. In addition, the dynamic nature
of Web data can cause the SOM to change its topology.

The bidirectional propagation within this new approach
allows for new information learned by an individual SOM
to be reflected in other hierarchy levels. Update propagation
upwards reflect how a parent SOM partially changes in view
of a change in a child SOM. Propagation downwards reflect
how children SOMs are more fully influenced by changes to a
parent SOM. The extension of the growing hierarchical self-
organizing map shown in this article is useful for the next-
generation of Web-enabled systems.
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