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Abstract

Confined types enforce a form of encapsulation stronger than what thestandard Java type
system offers. It is known that confined types effectively prevent accidental reference leaks that
could lead to security breaches in object-oriented programs. Because existing formulations
of confined types target the Java source language, they can only be enforced by the code
producer at compile time. As such these formulations fail to qualify as practical language-
based protection mechanisms for the Java platform.

This paper presents a capability-based formulation of confined types forJVM bytecode,
and reports the first implementation to enforce confined types at link time, on thecode con-
sumer side. This novel formulation of confined types is backward compatible, modular, and
interoperable with lazy dynamic linking. The paper also demonstrates how this bytecode-level
formulation of confined types can be applied to facilitate a form of secure cooperation between
mutually suspicious code units.



1 Introduction

Security is an essential attribute of dependable systems. The Java platform,a language envi-
ronment designed with security in mind, has been considered to be a platformof choice for
developing and deploying networked and extensible software systems with demanding secu-
rity requirements. At the core of the Java security infrastructure is a strong type system, which
provides non-bypassableencapsulation boundariesfor controlling access to privileged ser-
vices and sensitive data. To appreciate the pivotal role of type soundness and encapsulation in
the Java security enterprise, one only needs to recall that the soundness of the Java type system
guarantees that no type confusion will occur, and thus the security manager will be properly
encapsulated, and consequently the rest of the Java protection infrastructure can function as
designed.

Both the Java source language and the Java Virtual Machine (JVM) [20]provide access
control qualifiers (e.g.,public, protected, etc) for enforcing the usual notion of data
encapsulation. The Java platform, however, offers no provision for enforcing the stronger
notion ofreference encapsulation. This lack of programmatic support for preventing accidental
reference leaking has led to a security breach in thejava.security package of JDK 1.1.

The idea of confined types [31, 15, 34] was proposed as a lightweight annotation system for
supporting reference encapsulation in the Java platform. It has been shown convincingly that
proper adoption of confined types in Java could have prevented the aforementioned security
breach [31]. Unfortunately, because existing formulations of confinedtypes target the Java
source language, they can only be enforced by the code producer atcompile time. In the
context of the JVM, in which code units bind via dynamic linking [19], programverification
that is performed against source code, or administrated only by the code producer, cannot be
trusted [23]. Consequently, these source-level formulations of confined types do not allow us
to leverage reference encapsulation as a practical language-based protection mechanism [28]
for the Java platform.

This paper presents the first formulation of confined types for JVM bytecode, which can
be administrated by the code consumer at link time. This formulation of confined types offers
a number of unique features:

1. The typing discipline is structured as acapability type system, thereby significantly sim-
plifying the formulation and enforcement of the typing discipline.

2. The formulation isbackward compatible, in the sense that (a) classfiles decorated with
confined type annotations fully conform to the standard classfile format prescribed in
the JVM specification [20], and, more importantly, (2) no retro-annotation of the exist-
ing classes in the Java platform class library is necessary. Consequently, the proposed
formulation is fully compatible with the standard Java platform classes.

3. The type checking procedure ismodular, meaning that type checking can be conducted
one classfile at a time, thereby allowing a type checker to be integrated into the lazy
dynamic linking environment of the Java platform, in which the code units that make up
an application may not be completely loaded at run time.

4. The validation of intermodular dependencies isstagedaccording a schedule consistent
with the lazy dynamic linking semantics of Java, so that eager classloading is completely
eschewed, and thus unnecessary performance overhead is avoided.
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This paper also reports the first implementation of confined types as a link-time,language-
based protection mechanism. Such an implementation is made possible by an extensible pro-
tection mechanism, Pluggable Verification Modules (PVMs) [10, 11], available in an open
source JVM, the Aegis VM [9]. PVM is a general framework for introducing third-party byte-
code verification procedures safely into the dynamic linking process of theJVM. The adoption
of PVM as an enabling technology significantly reduces the engineering effort and the trusted
computing base of our implementation.

The benefit of a bytecode-level formulation of confined types is assessed in the context
of dynamically extensible software systems, in which both trusted and untrusted code coexist
in the same execution environment. This paper demonstrates how safe dynamiclinking can
be coupled with bytecode-level confined types to facilitate a form of secure cooperation [27,
29], in which mutually suspicious code units are protected from their potentiallymalicious
peers. Such an application would not have been possible if confined types are enforced only at
compile time.

This paper is organized as follows. The notion of confined types is introduced in the next
section. A reformulation of confined types as a type system for JVM bytecode is presented in
Section 3. The implementation of this formulation of confined types as a PVM is discussed
in Section 4. A case study demonstrating the utility of confined types for JVM bytecode in
supporting secure cooperation is discussed in Section 5. The paper closes with related work,
future work and conclusion.

2 Confined Types for Java

This section provides an overview of confined types as an augmented typesystem for the Java
source language. Consult [31] for more details.

2.1 Motivation: Security Breach Caused By Reference Leaking

The notion of confined types is motivated by the aforementioned referenceleaking bug as
presented in [31]. In Java 1.1, everyClass object carries an array of signers that represent
the principals under which the class acts.

public class Class {
private Identity[] signers;
public Identity[] getSigners() {
return signers;

}
}

A defective implementation of Java 1.1 naively returns the signers array owned byClass
as the value of thegetSigners method. Malicious caller who obtains this array will then
be able to tweak the contents of the array to amplify the access rights of any class. A simple
fix of the security breach is given below:

public class Class {
private Identity[] signers;
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public Identity[] getSigners() {
Identity[] dup = new Identity[signers.length];
for (int i = 0; i < signers.length; i++)

dup[i] = signers[i];
return dup;

}
}

This fix, however, is not a sound engineering solution to the problem, because the fix still
relies on programmers to exercise extreme care, the lack of which is essentially the cause of
the security breach in the first place. Instead, one desires a solution thatcompletely rules out
the possibility of committing the careless mistake all together. To this end, a new type qualifier
can be introduced to Java to declare that a reference type isconfined, meaning that object
references of that type (or arrays of that type) are not allowed to escape from the package in
which the reference type is declared. Exploiting this, one may rename theIdentity class to
ConfinedIdentity, and declare it asconfined:

confined class ConfinedIdentity { ...}

Now, the typing discipline confined types will ensure thatConfinedIdentity objects
never escape from their defining packages. Programmers are thus forced by the typing disci-
pline to develop code that does not leakConfinedIdentity references:

public class Identity {
SecureIdentity rep;
Identity(SecureIdentity si) { rep = si; }
...

}

public class Class {
private SecureIdentity[] signers;
public Identity[] getSigners() {
Identity[] dup = new Identity[signers.length];
for (int i = 0; i < signers.length; i++)

dup[i] = new Identity(signers[i]);
return dup;

}
}

The confinement type rules are summarized in the following. The particular formulation
of confined types presented in this section is a rational synthesis of the various formulations
presented in [31, 15, 34].

2.2 Anonymous Methods

An inherited method (or constructor) may be invoked on a confined reference. Since the su-
pertype in which the inherited method is declared may not be confined, the inherited method
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A1 The pseudo-parameterthis of an anonymous method must only be used
for accessing fields and as the receiver in the invocation of anonymous meth-
ods. More specifically,this must not be passed as an argument to a non-
anonymous method, returned as a method return value, or stored into a field.

A2 Anonymous methods shall only be overridden by anonymous methods.
A3 Anonymous methods must not benative.

Figure 1: Anonymity Rules

C1 A confined type must not bepublic.
C2 Subtypes of a confined type must be confined.
C3 The type ofpublic orprotected fields and the return type ofpublic

or protected methods must not be confined.
C4 A confined type must not be widened to an unconfined type.
C5 Methods invoked on a confined object must either be non-nativemethods

declared in a confined type or be anonymous methods.

Figure 2: Confinement Rules

may leak the confined receiver reference it obtains via thethis pseudo-parameter. It is there-
fore desirable to provide a means for a supertype to promise to its subtypes that an instance
method never leaks thethis pseudo-parameter. A confined subclasses can thus safely invoke
inherited methods that are annotated as such. To this end a method may be annotated as being
anonymous. Such a method promises not to leak the pseudo-parameterthis through field
setting and value returning. Figure 1 outlines the type rules regarding anonymity.

2.3 Confined Types

Instances of confined types are encapsulated in their defining package. The type rules for
enforcing confinement is given in Figure 2.C1 guarantees that code units defined outside of
a package is not allowed to create instances of a confined type.C2 assures that downcasting
and dynamic binding does not bypass confinement.C3 makes sure that confined objects are
not leaked via field access and method return.C4 requires that transitive data flow observes
confinement boundaries1. C5 mandates proper interfacing between code in confined types and
methods inherited from unconfined types.

1The formulation of this rule in [34] is apparently more restrictive: “Confined types can only be widened to other
types confined in the same package.” The discrepancy is, however, immaterial. Confined types are package private,
and thus their subtypes always belong to the same package. Inaddition,[15] correctly observes that a redundant rule
in [31] concerning exceptions is properly subsumed by this rule.
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Figure 3: Processing of Confined Type Annotations

3 Confined Types for JVM Bytecode

3.1 Assumptions and Notations

This section presents a formulation of confined types for JVM bytecode. To appreciate the
contributions of this paper, it is instrumental to understand that there arethree type systems
involved in the present discussion: (1) the standard Java type system, (2) the source-level
confined type system as described in the previous section, and (3) the bytecode-level confined
type system to be presented in this section.

Firstly, there is the standard Java type system. We useA andB to denote a Java reference
type, which is a class, interface, or array type in the standard Java type system. Methods and
fields are denoted bym andf respectively. A constant pool reference2 is denoted by its referent
delimited by angled brackets (〈·〉). For example,〈A〉 denotes a constant pool class reference
that resolves to the Java reference typeA. Similarly, 〈A.m〉 and〈A.f〉 denote respectively a
constant pool method reference that resolves to methodm declared inA and a constant pool
field reference that resolves to fieldf declared inA.

Secondly, there is the source-level confined type system. We assume thatJava source files
are properly annotated with confinement information: a Java class or interface can be annotated
as being confined, and an instance method can be annotated as being anonymous. Consult [31]
for a discussion of how such source-level annotations can be achieved.

Thirdly, there is the bytecode-level confined type system. We envision a programming
environment (Figure 3) in which confinement information embedded in Java source files is
extracted by a compiler frontend, translated into classfile annotations, and subsequently in-
jected into the classfiles generated by the standardjavac compiler. Type checking will be
conducted by the JVM at link time, against classfiles, at the bytecode level. It is the design
and implementation of this bytecode-level confined type system that this paperclaims to be
contributions.

3.2 Confined Types as Capabilities

The bytecode-level formulation of confined types takes the form of acapability type system
[4]. A capability is traditionally understood as an object reference plus a set of access rights
[8, 7]. In a capability type system, every object reference is statically assigned a capability
type, which prescribes what operations can be performed on the value.A capability type may
impose on the underlying value a set of operational restrictions that constrains the way the
value may be accessed. Three capability types are defined in our confinedtype system:

2The symbol table of a classfile is called a constant pool [20].
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• The bottom type (⊥) is the least restrictive capability type. It is used for typing both
unconfined object references and primitive type data (e.g.,int, boolean, etc). Values
typed as⊥ have the same semantics as in standard Java, and as such they can be freely
stored into any field, passed as an argument to any method, or returned asvalues to
method invocations.

• Theconfined type is used for typing those fields, method parameters (including the
this pseudo-parameter) and return values for which the underlying Java reference type
is confined. Object references typed asconfined can only be transferred to locations
that are marked explicitly asconfined or anonymous (see below).

• Theanonymous type is used for typing thethis pseudo-parameter of an anonymous
method. Object references typed asanonymous can only be passed via thethis
pseudo-parameter to an anonymous method, or used for accessing fields.

The three capability types form a subtyping hierarchy as shown below:

⊥ <: confined <: anonymous

where thesubtyping relation<: is reflexive, transitive and antisymmetric. As in a typical
capability type system, less restrictive capability types are subtypes of more restrictive ones.
This permits the assignment of less restrictively typed object references tomore restrictively
typed variables, while forbidding assignment in the opposite direction.

In this capability-based formulation of confined types, confined-ness and anonymity are
viewed as capabilities of object references rather than a property of a class or a method. As
we shall see in Sections 3.4 and 3.5 respectively, this design choice has greatly simplified
the data flow analysis involved in intraprocedural type checking, and reduces the amount of
classloading overhead in inter-modular type checking.

3.3 Confined Type Interface and Backward Compatibility

Confined type interface. Associated with each Java reference typeA is a confined type
interface〈EA, IA〉, whereEA is a set ofexport type assertions, andIA a set ofimport type
assertions. The setEA assigns a confined type annotation to each symbolexportedby the
classfile ofA: this includes the reference typeA itself, and the fields and methods declared in
the classfile. Similarly, the setIA assigns a confined type annotation to each symbolimported
by the classfile ofA: this includes the class, field, and method references in the constant poolof
the classfile. An export type assertion, that is, a member ofEA, must take one of the following
forms:

A : T assigns a confined typeT to the Java reference typeA, that is, the reference type defined
by the classfile. For example,A : confined declaresA to be confined, whileA : ⊥
declares otherwise.

f : T assigns a confined typeT to the fieldf declared in the classfile. For example,f :
confined declares that values stored inf has aconfined capability.

m : T0(T1, T2, . . . , Tk)T assigns confined types to the formal parameters and the return value
of a methodm declared in the classfile. Specifically,T0 is assigned to thethis pseudo-
parameter,T1, T2, . . .Tk to the parameters on the formal parameter list, andT to the
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return value. The intention is that assigninganonymous to T0 declares thatm is an
anonymous method. Notice that, for uniformity purposes,T0 is present even for static
methods. In that case,T0 is⊥ (see below).

A number of well-formedness constraints must be observed by a confinedtype interface:

• The capability type⊥ must be used for annotating fields, formal parameters, and return
values with primitive types (i.e.,int, boolean, etc). The placeholder (i.e.,T0) for
this in the annotation of a static method must be⊥.

• When the capability typeconfined is used for annotating fields, formal parameters
(including thethis pseudo-parameter of an instance method), and return values, the
annotated entity must have a Java reference type belonging to the same package asA3.

• The capability typeanonymous must only be used for annotating thethis pseudo-
parameter of an instance method.

An import type assertion, that is, a member ofIA, must take one of the following forms:

〈B〉 : T 〈B.f〉 : T 〈B.m〉 : T0(T1, T2, . . . , Tk)T

whereT , T0, T1, . . . are confined types. These assertions assign confined type annotations to
the referents of constant pool references. Well-formedness of import type assertions is defined
analogous to their export counterparts.

Backward compatibility. As pointed out earlier (Figure 3), classfiles must be properly
annotated to carry a confined type interface in order for the confined type system to be en-
forceable at link time. This would suggest that all classfiles belonging to the standard Java
platform will have to be explicitly annotated, a tedious process that should beavoided. To
this end, a classfile is allowed to be left unannotated, and thus assumes adefaultconfined type
interface: the export type annotation of the underlying class and the importtype annotation
of every class reference is⊥, so is that for a field or a field reference; similarly, the default
annotation of a method or a method reference is such that the return value and all formal pa-
rameters (including the pseudo-parameterthis) have type⊥. Since this definition of default
annotation is consistent with the standard Java type system, classfiles that donot carry explicit
confined type annotations behave in accordance with the standard Java semantics. The pro-
vision of assuming a default type interface for an unannotated classfile renders it possible to
reuse legacy classfiles not compiled for confined type checking. This is particularly handy in
the case of the standard Java platform class library — hundreds of system classes can be reused
as is. The current design of confined type interface is therefore backward compatible to legacy
Java code.

3.4 Modular Intrachecking

Code safety is in general a whole-program notion: the safety of a classfile depends not only on
properties that can be established by examining the classfile alone, but alsoon the compatibility

3This constraint is instrumental for preserving the soundness of this bytecode-level formulation of confined types.
The type system of the Java source language is restrictive enough that such a constraint is not necessary in a source-
level formulation of confined types. The JVM bytecode language, however, has a more type system, and thus necessi-
tates the inclusion of this constraint into the bytecode-level formulation of confined types.
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of the established properties with the runtime environment into which the classfileis linked.
In the context of type checking, the two tasks correspond to the validation of the internal
consistency of a type interface for a given code unit, and the validation ofthe compatibility
between this type interface and a given type environment. Cardelli succinctly calls the two
tasksintracheckingandinterchecking[5].

One desirable property for a typing discipline is the provision for modular type checking.
That is, intrachecking and interchecking should be cleanly separated, so that intrachecking of
a code unit can be performed in the absence of other code unit. The design of the confined type
interface renders type checking fully modular, meaning that intracheckingcan be performed
without consulting the confined type interface of external classfiles.

Intrachecking of a class must be conducted prior to class preparation [20, Section 5.4.2].
This may be as early as when a class is defined [20, Section 5.3.5], or as lateas during standard
bytecode verification [20, Section 5.4.1]. Two sets of checks are involved: (1) validating the
integrity of the confined type interface (Sect. 3.4.1); (2) validating if the body of each bytecode
method conforms to the method’s export type assertion (Sect. 3.4.2).

3.4.1 Integrity of Confined Type Interface

Besides trivial checks of well-formedness (Section 3.3), the following checks apply when a
classA is intrachecked.

• If A : confined ∈ EA, thenA must not be public (i.e.,C1 in Figure 2).

• If f : confined ∈ EA, thenf must not be public or protected (i.e.,C3 in Figure 2).

• If m : T0(T1, T2, . . . , Tk)T ∈ EA, whereT = confined, thenm must not be public
or protected (i.e.,C3 in Figure 2).

• If m : T0(T1, T2, . . . , Tk)T ∈ EA, andm is a native method, thenT0 = T1 = . . . =
Tk = T = ⊥ (i.e.,A3 in Figure 1).

These are straightforward reformulation of source-level type rules (Figure 1 and 2) in terms of
confined type assertions.

3.4.2 Analysis of Bytecode Methods

The export type assertion of a bytecode method is valid only if every program point in the
method body can be consistently assigned aconfined type state. The confined type state for a
program point is in turn an assignment of a confined type to every location inthe local variable
array and the operand stack. A consistent confined type state assignment is a solution to the
following constraint system:

1. The export type assertion of a bytecode method imposes typing constraints on the starting
program point: the operand stack should be empty; the local variable array should be
initialized with confined type annotations prescribed in the formal parameter listof the
export type assertion.

2. Every JVM bytecode instruction imposes typing constraints on the confined type states
at the program points immediately before and after and instruction.
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Such a constraint system can be solved efficiently using a standard work-list algorithm for data
flow analysis [24].

The typing constraints of JVM bytecode instructions are presented in this section. The
effect of executing a bytecode instruction is presented in a notation popularized by [20]. For
example, theiadd instruction pops two integers off the top of the operand stack, and subse-
quently push their sum. This can be illustrated as follows.

. . . , i1, i2 −→ . . . , i3

where integeri3 is the sum ofi1 andi2. Most of the JVM bytecode instructions manipulate
primitive type values, which trivially assume the capability type⊥, and thus retain their stan-
dard Java semantics. For example, confined type states before and afteran iadd instruction
must be constructed so thati1 : ⊥, i2 : ⊥, andi3 : ⊥. The typing constraints for most of the
bytecode instructions are trivial variants of this theme. The remaining of this section presents
the typing constraints of bytecode instructions that are non-trivial exceptions to the standard
pattern. The goals are to illustrate how the design of confined type interfacefacilitate modu-
lar intrachecking, and to points out subtleties not apparent in the high leveldescription of the
previous sections. A more complete list of type rules can be found in Appendix A.

Object creation. An instance of a confined Java reference type acquires itsconfined
capability when it is created. From that point on, it can either be propagated within its defining
confinement domain, or be promoted to the more restrictiveanonymous capability type when
it is pass asthis to an anonymous method. Because of the design of the subtyping hierarchy,
at no point shall such an instance acquire the⊥ capability type.

new〈B〉

Operand Stack: . . . −→ . . . ,v

Operation: Create a new instancev of Java reference typeB.

Type Constraints: Suppose〈B〉 : T ∈ IA andv : Tv. ThenT <: Tv.

A caveat is that string literals are created to have bottom type⊥ because thejava.lang.String
class has a default confined type interface.

ldc/ldc w 〈utf8-literal〉

Operand Stack: . . . −→ . . . ,v

Operation: Push aString literal v onto the operand stack.

Type Constraints: If v : Tv then⊥ <: Tv. That is, the referencev may assume any
type.

Basic interprocedural data flow. The following rules capture basic interprocedural data
flow in a bytecode method. They are the main engine behind the enforcement of source-level
type rulesA1, C4 andC5 (see Figures 1 and 2). Note how the source-level type rules are
elegantly captured by the design of the subtyping hierarchy. Also, the provision of import type
assertions enables one to perform intrachecking without consulting external classes.

getfield〈B.f〉

Operand Stack: . . . ,o −→ . . . ,v
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Operation: Retrieve the valuev of field 〈B.f〉 from object instanceo.

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenT <: Tv.

putfield 〈B.f〉

Operand Stack: . . . ,o, v −→ . . .

Operation: Store the valuev into the fieldB.f of object instanceo.

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenTv <: T .

invokevirtual 〈B.m〉

Operand Stack: . . . ,o, a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke method〈B.m〉 on object instanceo, passing argumentsa1, a2, . . . ,
ak. Any return valuev is pushed into the operand stack.

Type Constraints: Suppose〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈ IA. Suppose further
thato : To, ai : Tai

, andv : Tv. ThenTo <: T0, Tai
<: Ti, andT <: Tv.

areturn

Operand Stack: . . . ,o −→

Operation: Return object referenceo from current method.

Type Constraints: Supposeo : To, andm : T0(T1, . . . , Tk)T ∈ EA, wherem is the
current method. ThenTo <: T .

Subtle cases. Two subtle cases are considered here. The following rule ensures thatsource-
level type ruleC4 (Figure 2) is observed when type casting occurs.

checkcast〈B〉

Operand Stack: . . . ,o −→ . . . ,v

Operation: Attempt to cast object referenceo to a referencev of typeB.

Type Constraints: Suppose〈B〉 : T ∈ IA, ando : To andv : Tv. ThenTo <: T and
T <: Tv.

When an exception is thrown, the confined type of the exception object is implicitly widened to
the confined type of the exception handler’s catch type. As there is no guarantee which handler
will end up be catching an exception, one has to assume conservatively that the confined type
of the catch type is⊥. A constraint is therefore imposed to force all exceptions to have the
bottom type⊥.

athrow

Operand Stack: . . . ,o −→ o

Operation: Throwo as an exception.

Type Constraints: If o : To thenTo <: ⊥. That is,o : ⊥.

Arrays. Special attention was paid to the handling of arrays. Specifically, an arrayobject
is considered to be a carrier of its components. Consequently, an array type is confined iff its
component is confined. This avoids the leaking of confined objects through the propagation of
carrier arrays.
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anewarray〈B〉

Operand Stack: . . . ,n −→ . . . ,a

Operation: Create an arraya of component typeB with n components.

Type Constraints: Suppose〈B〉 : T ∈ IA anda : Ta. ThenT <: Ta.

aaload

Operand Stack: . . . ,a, i −→ . . . ,v

Operation: Load the reference componentv from array referencea at indexi.

Type Constraints: If a : Ta andv : Tv thenTa <: Tv.

aastore

Operand Stack: . . . ,a, i, v −→ . . .

Operation: Store reference valuev into array referencea as the component at indexi.

Type Constraints: If a : Ta andv : Tv thenTv <: Ta.

3.5 Incremental Interchecking and Lazy Dynamic Linking

Incremental interchecking. Interchecking involves the assurance of compatibility be-
tween confined type interfaces of code units that are dynamically linked together to form
an application. The lazy dynamic linking of Java code implies that intercheckingmust be
conducted in an incremental, carefully staged manner. Specifically, the following checks are
scheduled to occur at various stages of the dynamic linking process:

1. Class preparation.When a classA is prepared [20, Section 5.4.2], the following checks
are applied to ensure that the confined type interface ofA is consistent with those of its
supertypes:

• SupposeA extends or implements another reference typeB. Suppose further that
A : T ∈ EA andB : T ′ ∈ EB. ThenT ′ <: T (i.e.,C2 in Figure 2).

• SupposeA declares a methodm that overrides a method of the same signature in su-
pertypeB, so thatm : T0(T1, T2, . . . , Tk)T ∈ EA andm : T ′

0
(T ′

1
, T ′

2
, . . . , Tk)T

′ ∈
EB. ThenT ′

i
<: Ti for 0 ≤ i ≤ k andT <: T ′ (i.e.,A2 in Figure 1). In essence,

the usual contravariant rule for method type subtyping is in play here [26].

2. Constant pool resolution. When a constant pool entry is resolved in classA, the fol-
lowing checks are applied to assure that the export type assertion of the resolved target
is consistent with the import type assertion of the constant pool entry.

• Suppose the constant pool entry being resolved is〈B〉. Suppose further〈B〉 : T ∈
IA, andB : T ′ ∈ EB. Then bothT <: T ′ andT ′ <: T . That is,T = T ′.

• Suppose the constant pool entry being resolved is〈B.f〉. Suppose further〈B.f〉 :
T ∈ IA, andf : T ′ ∈ EB. Then bothT <: T ′ andT ′ <: T . That is,T = T ′.

• Suppose the constant pool entry being resolved is〈B.m〉. If 〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈
IA, andm : T ′

0
(T ′

1
, T ′

2
, . . . , T ′

k
)T ′ ∈ EB, thenTi <: T ′

i
for 0 ≤ i ≤ k, and

T ′ <: T . Again, the usual contravariant rule is in play here [26].
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Preservation of laziness in dynamic linking. Supposef is a field declared in classA,
so that the Java field type off is B. Suppose further thatB : T ∈ EB. The intention,
of course, is to havef : T ∈ EA, meaning that export type annotation faithfully reflects
whether the Java field type off is confined. Yet, it is entire conceivable thatf : T ′ ∈ EA,
whereT 6= T ′. That is, it is entirely possible for annotations to lie. Similar anomalies can
be constructed for the formal parameters and return values of methods, and such constructions
can work for both import type assertions and export type assertions. Tofix thoughts, the Java
types of fields, formal parameters and return values are called auxiliary symbols. For example,
B is an auxiliary symbol inA. To rephrase the anomaly, the annotations of auxiliary symbols
may not accurately reflect their confined-ness.

This seemingly dangerous state of affairs is in fact quite harmless. The reason is that
the intrachecking type rules (e.g.,new) dictate that a new instance of Java reference typeB

acquires a capability that accurately reflects the confined-ness ofB. In order for this instance of
B to successfully escape from its scope of instantiation, the import type assertions of constant
pool entries in whichB is an auxiliary symbol must be accurate in order for intrachecking to
succeed. Similarly, in order for these constant pool entries to resolve successfully, the export
type assertions of the resolved targets must match the import type assertions (which are known
to be accurate), thereby forcing the export type assertions to be accurate. Consequently, any
unsafe annotation of auxiliary symbols will be detected by type checking. This is the beauty
of treating confined-ness as a capability rather than an intrinsic property of a Java reference
type: it forces code producers not to lie if they want to have their code executed on the code
consumer environment.

An alternative design were to explicitly enforce strict conformance between the actual
confined-ness of auxiliary symbols and their annotations. This alternativedesign, however,
necessitates the loading of classfiles corresponding to the auxiliary symbolsat various stages
of interchecking. These additional classloading activities will introduce overhead that is known
to cause serious impact to the performance of an application [33].

The capability-based design adopted in this paper intentionally eschews eager classloading
by a liberal annotation scheme. The scheme does not demand that annotations accurately
reflect the confined-ness of auxiliary symbols. Yet, failure to do so causes either intrachecking
or interchecking to fail, thereby protecting the integrity of dynamic linking. Consequently,
laziness of dynamic linking is preserved without sacrificing type safety.

4 Implementation Under the PVM Framework

This section reports the first implementation4 of confined types as a link-time protection mech-
anism for the JVM.

4.1 Embedding Confined Type Interfaces

To make confined types enforceable at link time, every classfile must carrya confined type
interface. This can be achieved by embedding a confined type interface into classfiles through
the classfile attribute facility [20, Section 4.7]. Specifically, import and export type assertions

4This implementation can be found in the CVS repository of theAegis VM Project.
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are embedded via a compact encoding in aConfinedTypes class attribute. A classfile may
carry at most one such attribute; the absence of the attribute in a classfile signals that it assumes
a default confined type interface (Section 3.3). A simple Linux command-line tool has been
developed to take the role of the backend component in Figure 3, providinga convenient means
for manual annotation of classfiles. The classes examined in the case studies in Section 5 were
all annotated using this tool.

4.2 Pluggable Verification Module

An implementation of the intrachecking and interchecking procedures described in Section
3 must be incorporated into the dynamic linking process of the JVM in order to enforce the
bytecode-level formulation of confined types. The Aegis VM [9] is an open source JVM that
offers an extensible protection mechanism called Pluggable Verification Modules (PVMs) [10,
11]. Unlike other implementations of the JVM, in which the link-time bytecode verification
service is a fixture that cannot be extended conveniently, the PVM framework is based on
a modular verification architecture whereby bytecode verification is a pluggable service that
can be readily replaced, reconfigured and augmented. Third-party verification services can
be safely incorporated into the dynamic linking process as a PVM. The verification service
exported by a PVM will be invoked prior to the preparation of a classfile. The PVM may also
schedule programmer-defined checks to occur at various points of the dynamic linking process.
The PVM framework also provides reusable facilities for easing the construction of link-time
static program analyzers.

In our case, the intrachecking procedure of Section 3.4 has been encapsulated in a PVM,
while the interchecking steps of Section 3.5 have been scheduled to take place at the appropri-
ate points of dynamic linking. Implementation began after the formulation in Section 3was
stabilized. The coding effort has been logged using a scheme akin to the Personal Software
Process [17]. The first working version of the implementation consists of 2926 lines of moder-
ately commented C code, finished in 35 man-hours spanning over approximately one month.
A modest code complexity and rapid development cycle were achieved because the Aegis VM
provides reusable facilities to ease the development of link-time verification services. The
compactness of the resulting implementation also suggests that link-time enforcement of con-
fined types involves only a modest increase in the size of thetrusted computing base (TCB),
thereby preserving the tractability of TCB verification and validation.

5 Secure Cooperation

A fundamental security challenge in dynamically extensible software systems has been the
facilitation of secure cooperation among mutually suspicious code units within thesame appli-
cation [27, 29]. This section illustrate how a class may exploit the bytecode-level formulation
of confined types to impose confinement policies on data structures it shares with untrusted
peer classes. Specifically, four tactics will be discussed:

1. Protection by access contracts.Confinement policies are embedded in confined type
interfaces, specifying a contract between a class and its untrusted collaborators.
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2. Safe dynamic linking. The interchecking type rules in Section 3.5 (constant pool reso-
lution) ensure that the contract is honored by peer collaborators.

3. Trust inspiration. To inspire trust, collaborating code units must formulate matching
confined type interfaces. The intrachecking type rules in Section 3.4 ensures that the
collaborators indeed live up to their promises.

4. Secure software extension.Dynamic software extension is enabled in Java through a
combination of dynamic loading and subtyping. The interchecking type rules in Section
3.5 (class preparation) ensure that dynamically loaded software extensions honor the
confinement policies prescribed by their supertypes.

This section presents a case study that illustrates the above tactics.

5.1 Protection Through Import Type Assertions

Suppose an application classAlice is to share withBob an instance ofResource that she
owns.Alice does so by passing theResource object as an argument to the methodshare
exported byBob, with the mutual understanding thatBob is not to leak thisResource
reference outside of the defining package ofAlice:

package domain;

confined class Resource { ...}

public class Alice {
static Resource resource = new Resource();
public static void main(String[] args) {
Bob.share(resource);

}
}

SupposeAlice cannot trust thatBob will uphold his end of the contract. To ensure
thatBob does not leak theResource reference accidentally or maliciously, the classfile of
Alice can be annotated with aConfinedTypes attribute that contains the followingimport
type assertion:

〈Bob.share〉 : ⊥(confined)⊥

When the constant pool entry〈Bob.share〉 is resolved in classAlice, interchecking will
make sure that the resolved target has a matching export type assertion that promises to confine
the argument reference. The Aegis VM will thus refuse to linkAlice with any implementa-
tion of Bob that does not honor the import type assertion specified byAlice

5.2 Inspiring Trust by Export Type Assertions

Suppose the classBob indeed provides a non-leaking implementation of theshare method:

package domain;
public class Bob {
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static Resource resource;
public static void share(Resource resource) {
Bob.resource = resource;

}
}

To inspire trust, the classfile ofBob must be annotated properly. Specifically, the confined
type interface ofBob must contain the followingexport type assertion:

share : ⊥(confined)⊥

When the classBob is intrachecked, data flow analysis will be conducted on the body of the
share method to ensure that it lives up to its promise.

To appreciate the robustness of trust inspiration, consider a version ofBob in whichshare
exposes theResource reference:

package domain;
public class Bob {

public static Object leak;
public static void share(Resource resource) {
leak = resource;

}
}

The share method stores theResource reference into a public fieldleak, thereby
exposing the reference to access from outside of thedomain package. Without further an-
notation,Alice will not link with Bob due to the incompatibility between the import type
assertion of〈Bob.share〉 in Alice and the export type assertion ofshare in the default
confined type interface ofBob. Yet,Bob may lie by forging a confined type interface with an
export type assertion that falsely claims that theResource argument isconfined:

share : ⊥(confined)⊥

When the Aegis VM performs intrachecking, the data flow analyzer will discover that reference
leaking occurs in the body ofshare, and thus tagBob as unsafe.

5.3 Secure Software Extension

Consider a more interesting example, in which the classAlice shares theResource refer-
ence with a dynamically loaded software extension:

package domain;
public class Alice {

Resource resource = new Resource();
public static void main(String[] args) throws Throwable {
Class C = Class.forName(args[0]);
Bob b = (Bob) C.newInstance();
b.share(resource)

}
}
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In this example,Bob is an interface specifying the sharing protocol.

package domain;
public interface Bob {

void share(Resource resource);
}

To protectAlice, the classfile ofBob is annotated to ensure that any implementation of
theshare method must confine theReference argument. Specifically,Bob is endowed
with the following export type assertion:

share : ⊥(confined)⊥

Suppose the classCharlie provides a non-compliant implementation ofBob.share:

package domain;
public class Charlie implements Bob {

public static Resource leak;
public void share(Resource resource) {
leak = resource;

}
}

If Charlie is not annotated, and thus assumes a default confined type interface, then
the export type assertion ofshare will violate the method overriding rule scheduled to be
checked at the time of class preparation (Section 3.5). Alternatively, ifCharlie falsely
claims the following export type assertion:

share : ⊥(confined)⊥

then intrachecking will detect the inconsistency. In both cases, this faulty implementation of
Charlie will be rejected.

6 Concluding Remarks

6.1 Related Work

Language-based security. Language-based protection mechanisms employ programming
languages technologies such as static analysis, program transformation,and type systems to
address the security challenges of complex software systems [28]. Exemplary work includes
software-based fault isolation [32], proof-carrying code [23], inlined reference monitors [30]
and typed assembly languages [22]. Our long term research goal is to offer a language-based
protection mechanism in which access control policies are defined via capability types. The
present work is a helpful step in better understanding the structure of a capability type system
for JVM bytecode.
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Confined types. Confined types [31, 15, 34] is an example of alias control type systems
[16, 21, 2, 25, 6, 4, 1, 3]. The common goal of these type systems is to control the proliferation
of side effects due to aliasing in object-oriented programs. Confined typesand the closely re-
lated ownership types [6] offer fresh interpretations of encapsulation,a notion with pertinence
to language-based access control. Reformulating confined types to target JVM bytecode opens
up a number of issues that are not addressed in the original source-level formulation: backward
compatibility, modularity, and lazy dynamic linking. Our capability-based formulation turns
confined types into a practical protection mechanism by addressing the above issues

Capability types. The idea of using typing disciplines to model capabilities has been
around for some years (e.g., [4]). Existing capability type systems target source or hypo-
thetical languages in a closed environment. A contribution of this paper is the formulation of a
capability type system for JVM bytecode that takes into account the dynamic linking semantics
of Java and the threat of untrusted software extensions.

Modular verification. The PVM framework [10] of the Aegis VM [9] is based on a mod-
ular verification architecture called Proof Linking [11]. The correctness of Proof Linking,
especially its interaction with lazy dynamic linking, has been studied rigorously [12]. The cor-
rectness proof has been generalized to account for multiple classloaders [13]. The JAC type
system [18] is another type system that has been implemented in the PVM framework [10].
The reformulation of confined types for the JVM bytecode is conceptually more involved than
that of JAC.

6.2 Future Work

The present work is being extended in two directions. Firstly, the author is exploring a re-
finement of confined types calleddiscretionary object confinement[14], in which confinement
domains are stratified into a hierarchy of partially ordered trust levels. Theboundary of a
confinement domain is semi-permeable: objects can escape from one confinement domain to
another if the trust relation permits it, or when the escape is explicitly granted bydiscretion. It
turns out discretionary object confinement can be applied to build a minimalist capability sys-
tem for the JVM. Secondly, the author is exploring a generic framework for defining capability
type systems for JVM bytecode. The goal is to provide a meta language for programmers to
specify their own capability type systems. The specification is then compiled into a link-time
type checker that can be readily integrated into a JVM.

6.3 Conclusion

The first formulation of confined types for JVM bytecode is proposed to enable link time en-
forcement. The formulation is backward compatible, capability-based, modular, and interop-
erable with lazy dynamic linking. A prototype of the link-time type checker has been realized
in the framework of Pluggable Verification Modules as a third-party verification service of the
Aegis VM. The application of this formulation of confined types to achieve a form of secure
cooperation has been illustrated in a case study.
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A Confined Type Rules for JVM Bytecode Instructions

aaload

Operand Stack: . . . ,a, i −→ . . . ,v

Operation: Load the reference componentv from array referencea at indexi.

Type Constraints: If a : Ta andv : Tv thenTa <: Tv.

aastore

Operand Stack: . . . ,a, i, v −→ . . .

Operation: Store reference valuev into array referencea as the component at indexi.

Type Constraints: If a : Ta andv : Tv thenTv <: Ta.

aconstnull

Operand Stack: . . . −→ . . . ,v

Operation: Push anull referencev onto the operand stack.

Type Constraints: If v : Tv then⊥ <: Tv. That is, thenull reference may assumes
any type.

anewarray〈B〉

Operand Stack: . . . ,n −→ . . . ,a

Operation: Create an arraya of component typeB with n components.

Type Constraints: Suppose〈B〉 : T ∈ IA anda : Ta. ThenT <: Ta.

areturn

Operand Stack: . . . ,o −→

Operation: Return object referenceo from current method.

Type Constraints: Supposeo : To, andm : T0(T1, . . . , Tk)T ∈ EA, wherem is the
current method. ThenTo <: T .

athrow

Operand Stack: . . . ,o −→ o

Operation: Throwo as an exception.

Type Constraints: If o : To thenTo <: ⊥. That is,o : ⊥.

checkcast〈B〉

Operand Stack: . . . ,o −→ . . . ,v

Operation: Attempt to cast object referenceo to a referencev of typeB.

Type Constraints: Suppose〈B〉 : T ∈ IA, ando : To and andv : Tv. ThenTo <: T

andT <: Tv.

getfield〈B.f〉

Operand Stack: . . . ,o −→ . . . ,v

Operation: Retrieve the valuev of field 〈B.f〉 from object instanceo.

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenT <: Tv.
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getstatic〈B.f〉

Operand Stack: . . . −→ . . . ,v

Operation: Retrieve valuev from the static field〈B.f〉.

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenT <: Tv.

ldc/ldc w 〈utf8-literal〉

Operand Stack: . . . −→ . . . ,v

Operation: Push aString literal v onto the operand stack.

Type Constraints: If v : Tv then⊥ <: Tv. That is, the referencev may assume any
type.

multianewarray〈B〉, k

Operand Stack: . . . ,n1, n2, . . . ,nk −→ . . . ,a

Operation: Create a multidimensional arraya of array typeB with space allocated for
the firstk dimensions.

Type Constraints: Suppose〈B〉 : T〈B〉 ∈ IA. ThenT〈B〉 <: Ta.

new〈B〉

Operand Stack: . . . −→ . . . ,v

Operation: Create a new instancev of Java reference typeB.

Type Constraints: Suppose〈B〉 : T ∈ IA andv : Tv. ThenT <: Tv.

putfield 〈B.f〉

Operand Stack: . . . ,o, v −→ . . .

Operation: Store the valuev into the fieldB.f of object instanceo.

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenTv <: T .

putstatic〈B.f〉

Operand Stack: . . . ,o, v −→ . . .

Operation: Store the valuev into the static fieldB.f .

Type Constraints: Suppose〈B.f〉 : T ∈ IA, andv : Tv. ThenTv <: T .

invokeinterface〈B.m〉

Operand Stack: . . . ,o, a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke interface method〈B.m〉 on object instanceo, passing argumentsa1,
a2, . . . ,ak. Any return valuev is pushed into the operand stack.

Type Constraints: Suppose〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈ IA. Suppose further
thato : To, ai : Tai

, andv : Tv. ThenTo <: T0, Tai
<: Ti, andT <: Tv.

invokespecial〈B.m〉

Operand Stack: . . . ,o, a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke private method, instance initializer, or superclass method〈B.m〉 on
object instanceo, passing argumentsa1, a2, . . . , ak. Any return valuev is pushed
into the operand stack.
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Type Constraints: Suppose〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈ IA. Suppose further
thato : To, ai : Tai

, andv : Tv. ThenTo <: T0, Tai
<: Ti, andT <: Tv.

invokestatic〈B.m〉

Operand Stack: . . . ,a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke static method〈B.m〉 with argumentsa1, a2, . . . , ak. Any return
valuev is pushed into the operand stack.

Type Constraints: Suppose〈B.m〉 : ⊥(T1, T2, . . . , Tk)T ∈ IA. Suppose further that
ai : Tai

andv : Tv. ThenTai
<: Ti andT <: Tv.

invokevirtual 〈B.m〉

Operand Stack: . . . ,o, a1, a2, . . . ,ak −→ . . . ,v

Operation: Invoke method〈B.m〉 on object instanceo, passing argumentsa1, a2, . . . ,
ak. Any return valuev is pushed into the operand stack.

Type Constraints: Suppose〈B.m〉 : T0(T1, T2, . . . , Tk)T ∈ IA. Suppose further
thato : To, ai : Tai

, andv : Tv. ThenTo <: T0, Tai
<: Ti, andT <: Tv.
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