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Abstract

Confined types enforce a form of encapsulation stronger than whatahdard Java type
system offers. Itis known that confined types effectively preveaidental reference leaks that
could lead to security breaches in object-oriented programs. Becaissiagformulations
of confined types target the Java source language, they can onlyfdreezhby the code
producer at compile time. As such these formulations fail to qualify as pratticguage-
based protection mechanisms for the Java platform.

This paper presents a capability-based formulation of confined typeB/fdrbytecode,
and reports the first implementation to enforce confined types at link time, arottescon-
sumer side. This novel formulation of confined types is backward compatitwdular, and
interoperable with lazy dynamic linking. The paper also demonstrates howytleisdole-level
formulation of confined types can be applied to facilitate a form of seclwopearation between
mutually suspicious code units.



1 Introduction

Security is an essential attribute of dependable systems. The Java platflaimguage envi-
ronment designed with security in mind, has been considered to be a platfainoice for
developing and deploying networked and extensible software systemsemtandling secu-
rity requirements. At the core of the Java security infrastructure is agstype system, which
provides non-bypassabincapsulation boundarief®r controlling access to privileged ser-
vices and sensitive data. To appreciate the pivotal role of type sossidne encapsulation in
the Java security enterprise, one only needs to recall that the sosralnies Java type system
guarantees that no type confusion will occur, and thus the security manggbe properly
encapsulated, and consequently the rest of the Java protection udtasgrcan function as
designed.

Both the Java source language and the Java Virtual Machine (JVMp[20]de access
control qualifiers (e.g.publ i c, prot ect ed, etc) for enforcing the usual notion of data
encapsulation. The Java platform, however, offers no provisionritoreing the stronger
notion ofreference encapsulatioi his lack of programmatic support for preventing accidental
reference leaking has led to a security breach ir #nea. securi t y package of JIDK 1.1.

The idea of confined types [31, 15, 34] was proposed as a lightweigbtation system for
supporting reference encapsulation in the Java platform. It has beam slonvincingly that
proper adoption of confined types in Java could have prevented thenadationed security
breach [31]. Unfortunately, because existing formulations of confippes target the Java
source language, they can only be enforced by the code producemgile time. In the
context of the JVM, in which code units bind via dynamic linking [19], progneerification
that is performed against source code, or administrated only by the codecer, cannot be
trusted [23]. Consequently, these source-level formulations of aahfypes do not allow us
to leverage reference encapsulation as a practical language-basectipn mechanism [28]
for the Java platform.

This paper presents the first formulation of confined types for JVM lbglecwhich can
be administrated by the code consumer at link time. This formulation of confiped tffers
a number of unique features:

1. The typing discipline is structured asapability type systenthereby significantly sim-
plifying the formulation and enforcement of the typing discipline.

2. The formulation iackward compatiblein the sense that (a) classfiles decorated with
confined type annotations fully conform to the standard classfile fornestcpbed in
the JVM specification [20], and, more importantly, (2) no retro-annotatfdheexist-
ing classes in the Java platform class library is necessary. Consegtleathroposed
formulation is fully compatible with the standard Java platform classes.

3. The type checking procedurerndular, meaning that type checking can be conducted
one classfile at a time, thereby allowing a type checker to be integrated intozthe la
dynamic linking environment of the Java platform, in which the code units tha¢ mpk
an application may not be completely loaded at run time.

4. The validation of intermodular dependenciestagedaccording a schedule consistent
with the lazy dynamic linking semantics of Java, so that eager classloadinydetely
eschewed, and thus unnecessary performance overhead is avoided



This paper also reports the first implementation of confined types as a linkkingeiage-
based protection mechanism. Such an implementation is made possible by aibkxpaos
tection mechanism, Pluggable Verification Modules (PVMs) [10, 11], adailaban open
source JVM, the Aegis VM [9]. PVM is a general framework for introthgcthird-party byte-
code verification procedures safely into the dynamic linking process dMive The adoption
of PVM as an enabling technology significantly reduces the engineerfioig @hd the trusted
computing base of our implementation.

The benefit of a bytecode-level formulation of confined types is asddasthe context
of dynamically extensible software systems, in which both trusted and urdrestie coexist
in the same execution environment. This paper demonstrates how safe dyin&ings can
be coupled with bytecode-level confined types to facilitate a form of sempwperation [27,
29], in which mutually suspicious code units are protected from their potentialjcious
peers. Such an application would not have been possible if confinesldgpenforced only at
compile time.

This paper is organized as follows. The notion of confined types is intemtlin the next
section. A reformulation of confined types as a type system for JVM bsgleeisopresented in
Section 3. The implementation of this formulation of confined types as a PVM iastied
in Section 4. A case study demonstrating the utility of confined types for JVildcbge in
supporting secure cooperation is discussed in Section 5. The papes wldh related work,
future work and conclusion.

2 Confined Types for Java

This section provides an overview of confined types as an augmentesytyigen for the Java
source language. Consult [31] for more details.

2.1 Motivation: Security Breach Caused By Reference Leaking

The notion of confined types is motivated by the aforementioned refeteakang bug as
presented in [31]. In Java 1.1, evedyass object carries an array of signers that represent
the principals under which the class acts.

public class O ass {
private ldentity[] signers;
public ldentity[] getSigners() {
return signers;

}
}

A defective implementation of Java 1.1 naively returns the signers arragebtwyCl ass
as the value of thget Si gner s method. Malicious caller who obtains this array will then
be able to tweak the contents of the array to amplify the access rights of asy &laimple
fix of the security breach is given below:

public class Cass {
private ldentity[] signers;



public ldentity[] getSigners() {
Identity[] dup = new ldentity[signers.|ength];
for (int i =0; i < signers.length; i++)
dup[i] = signers[i];
return dup;
}
¥

This fix, however, is not a sound engineering solution to the problemubedae fix still
relies on programmers to exercise extreme care, the lack of which is ebgdhdacause of
the security breach in the first place. Instead, one desires a solutiorothpatetely rules out
the possibility of committing the careless mistake all together. To this end, a newugptea
can be introduced to Java to declare that a reference typeniined meaning that object
references of that type (or arrays of that type) are not allowed t@pesitom the package in
which the reference type is declared. Exploiting this, one may renamedtet i t y class to
Confi nedl dentity, and declare it asonf i ned:

confined class Confinedldentity { ...}

Now, the typing discipline confined types will ensure t@anf i nedl dent i t y objects
never escape from their defining packages. Programmers are thad toy the typing disci-
pline to develop code that does not l€2dnf i nedl dent i ty references:

public class ldentity {
Secureldentity rep;
Identity(Secureldentity si) { rep = si; }

}...

public class Cass {
private Secureldentity[] signers;
public ldentity[] getSigners() {
Identity[] dup = new ldentity[signers.length];
for (int i =0; i < signers.length; i++)
dup[i] = new ldentity(signers[i]);
return dup;
}
}

The confinement type rules are summarized in the following. The particulawufation
of confined types presented in this section is a rational synthesis of tioeisvdormulations
presented in [31, 15, 34].

2.2 Anonymous Methods

An inherited method (or constructor) may be invoked on a confined refereSince the su-
pertype in which the inherited method is declared may not be confined, theténhmethod



Al | The pseudo-parametehi s of an anonymous method must only be used
for accessing fields and as the receiver in the invocation@fi@mous meth
ods. More specificallyt hi s must not be passed as an argument to a non-
anonymous method, returned as a method return value, edstdp a field.
A2 | Anonymous methods shall only be overridden by anonymoubadst

A3 | Anonymous methods must not hat i ve.

Figure 1: Anonymity Rules

C1 | A confined type must not bgubl i c.

C2 | Subtypes of a confined type must be confined.

C3 | The type ofpubl i c orpr ot ect ed fields and the return type giubl i c
or pr ot ect ed methods must not be confined.

C4 | A confined type must not be widened to an unconfined type.

C5 | Methods invoked on a confined object must either be mani ve methods
declared in a confined type or be anonymous methods.

Figure 2. Confinement Rules

may leak the confined receiver reference it obtains vid thies pseudo-parameter. It is there-
fore desirable to provide a means for a supertype to promise to its subtyiemtinstance
method never leaks thehi s pseudo-parameter. A confined subclasses can thus safely invoke
inherited methods that are annotated as such. To this end a method may tadezhas being
anonymous Such a method promises not to leak the pseudo-parambetes through field
setting and value returning. Figure 1 outlines the type rules regardingymauityn

2.3 Confined Types

Instances of confined types are encapsulated in their defining pacKdgetype rules for
enforcing confinement is given in Figure 21 guarantees that code units defined outside of
a package is not allowed to create instances of a confined g§%assures that downcasting
and dynamic binding does not bypass confineméitmakes sure that confined objects are
not leaked via field access and method retuts.requires that transitive data flow observes
confinement boundari€sC5 mandates proper interfacing between code in confined types and
methods inherited from unconfined types.

1The formulation of this rule in [34] is apparently more réstive: “Confined types can only be widened to other
types confined in the same package.” The discrepancy is,yesnienmaterial. Confined types are package private,
and thus their subtypes always belong to the same packageldltion,[15] correctly observes that a redundant rule
in [31] concerning exceptions is properly subsumed by thlis.r
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3 Confined Types for JVM Bytecode

3.1 Assumptions and Notations

This section presents a formulation of confined types for JVM bytecodeappreciate the
contributions of this paper, it is instrumental to understand that therthegetype systems
involved in the present discussion: (1) the standard Java type systetime(2ource-level
confined type system as described in the previous section, and (3)tdeodg-level confined
type system to be presented in this section.

Firstly, there is the standard Java type system. WeAuged B to denote a Java reference
type, which is a class, interface, or array type in the standard Javaygfms Methods and
fields are denoted by andf respectively. A constant pool refereRégdenoted by its referent
delimited by angled brackets-{). For example{A) denotes a constant pool class reference
that resolves to the Java reference typeSimilarly, (A.m) and (A. f) denote respectively a
constant pool method reference that resolves to methai@clared inA and a constant pool
field reference that resolves to fiefddeclared inA.

Secondly, there is the source-level confined type system. We assunjavhaource files
are properly annotated with confinement information: a Java class oricgésrén be annotated
as being confined, and an instance method can be annotated as beiymans®nConsult [31]
for a discussion of how such source-level annotations can be adhieve

Thirdly, there is the bytecode-level confined type system. We envisiomgrgamming
environment (Figure 3) in which confinement information embedded in Javas files is
extracted by a compiler frontend, translated into classfile annotations,ulisdaiently in-
jected into the classfiles generated by the stangdardac compiler. Type checking will be
conducted by the JVM at link time, against classfiles, at the bytecode lenviglthe design
and implementation of this bytecode-level confined type system that this plapes to be
contributions.

3.2 Confined Types as Capabilities

The bytecode-level formulation of confined types takes the form adpability type system
[4]. A capability is traditionally understood as an object reference pliet afsaccess rights
[8, 7]. In a capability type system, every object reference is staticaligress a capability
type, which prescribes what operations can be performed on the vakapability type may
impose on the underlying value a set of operational restrictions that aorsthe way the
value may be accessed. Three capability types are defined in our coyfieesl/stem:

2The symbol table of a classfile is called a constant pool [20].



e The bottom type () is the least restrictive capability type. It is used for typing both
unconfined object references and primitive type data (erd., bool ean, etc). Values
typed asl have the same semantics as in standard Java, and as such they calybe free
stored into any field, passed as an argument to any method, or returivetlas to
method invocations.

e Theconfi ned type is used for typing those fields, method parameters (including the
t hi s pseudo-parameter) and return values for which the underlying Jaramee type
is confined. Object references typedcamf i ned can only be transferred to locations
that are marked explicitly asonf i ned oranonynous (see below).

e Theanonynous type is used for typing thehi s pseudo-parameter of an anonymous
method. Object references typed asonynous can only be passed via thehi s
pseudo-parameter to an anonymous method, or used for accessing fields

The three capability types form a subtyping hierarchy as shown below:
1 <:confined <: anonynous

where thesubtyping relation<: is reflexive, transitive and antisymmetric. As in a typical
capability type system, less restrictive capability types are subtypes of esiretive ones.
This permits the assignment of less restrictively typed object refereneeerrestrictively
typed variables, while forbidding assignment in the opposite direction.

In this capability-based formulation of confined types, confined-nedsaannymity are
viewed as capabilities of object references rather than a propertylags @r a method. As
we shall see in Sections 3.4 and 3.5 respectively, this design choice dwetty grimplified
the data flow analysis involved in intraprocedural type checking, angcesdthe amount of
classloading overhead in inter-modular type checking.

3.3 Confined Type Interface and Backward Compatibility

Confined type interface. Associated with each Java reference typés aconfined type
interface (£4,7Z4), where& 4 is a set ofexport type assertiong@ndZ4 a set ofimport type
assertions The setf4 assigns a confined type annotation to each syrelRpbrtedby the
classfile ofA: this includes the reference typkitself, and the fields and methods declared in
the classfile. Similarly, the s&ty assigns a confined type annotation to each syrimbpbrted

by the classfile of: this includes the class, field, and method references in the constamfpool
the classfile. An export type assertion, that is, a membé&ypmust take one of the following
forms:

A : T assigns a confined ty@geto the Java reference typk that is, the reference type defined
by the classfile. For example, : conf i ned declaresA to be confined, whiled : L
declares otherwise.

f T assigns a confined tygg to the field f declared in the classfile. For examplg,:
conf i ned declares that values storedfirhas aconf i ned capability.

m : To(Th,Ts, ..., )T assigns confined types to the formal parameters and the return value
of a methodn declared in the classfile. Specifically, is assigned to thehi s pseudo-
parameter]ly, Ts, ...T} to the parameters on the formal parameter list, @ni the
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return value. The intention is that assigniagonynous to T, declares thatn is an
anonymous method. Notice that, for uniformity purposgsis present even for static
methods. In that casé&j is L (see below).

A number of well-formedness constraints must be observed by a cotfipedhterface:

e The capability typel. must be used for annotating fields, formal parameters, and return
values with primitive types (i.ei,nt, bool ean, etc). The placeholder (i.€L}) for
t hi s in the annotation of a static method must be

e When the capability typeonf i ned is used for annotating fields, formal parameters
(including thet hi s pseudo-parameter of an instance method), and return values, the
annotated entity must have a Java reference type belonging to the saragegash®.

e The capability typeanonynous must only be used for annotating théi s pseudo-
parameter of an instance method.

An import type assertion, that is, a membefZaf, must take one of the following forms:
(B):T (B.f): T (B.m) : To(Th, T, ..., Ty)T

whereT, Ty, T1, . ..are confined types. These assertions assign confined type tiomota
the referents of constant pool references. Well-formedness of typar assertions is defined
analogous to their export counterparts.

Backward compatibility. As pointed out earlier (Figure 3), classfiles must be properly
annotated to carry a confined type interface in order for the confineddygtem to be en-
forceable at link time. This would suggest that all classfiles belonging totémelard Java
platform will have to be explicitly annotated, a tedious process that shoub/dided. To
this end, a classfile is allowed to be left unannotated, and thus assutefsidconfined type
interface: the export type annotation of the underlying class and the inypartannotation

of every class reference is, so is that for a field or a field reference; similarly, the default
annotation of a method or a method reference is such that the return valad &ormal pa-
rameters (including the pseudo-parameter s) have typel. Since this definition of default
annotation is consistent with the standard Java type system, classfiles tiwtodory explicit
confined type annotations behave in accordance with the standardedasatEs. The pro-
vision of assuming a default type interface for an unannotated classfillen®it possible to
reuse legacy classfiles not compiled for confined type checking. Thetieylarly handy in
the case of the standard Java platform class library — hundreds ofrsgtsteses can be reused
as is. The current design of confined type interface is thereforenzadicompatible to legacy
Java code.

3.4 Modular Intrachecking

Code safety is in general a whole-program notion: the safety of a téedsfiends not only on
properties that can be established by examining the classfile alone, bohalscompatibility

3This constraint is instrumental for preserving the sousdru this bytecode-level formulation of confined types.
The type system of the Java source language is restrictiveginthat such a constraint is not necessary in a source-
level formulation of confined types. The JVM bytecode larggidnowever, has a more type system, and thus necessi-
tates the inclusion of this constraint into the bytecodelléormulation of confined types.
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of the established properties with the runtime environment into which the clasdliied.
In the context of type checking, the two tasks correspond to the validatitimeanternal
consistency of a type interface for a given code unit, and the validatidimeofompatibility
between this type interface and a given type environment. Cardelli stigcaadis the two
tasksintracheckingandinterchecking5].

One desirable property for a typing discipline is the provision for modulag tygecking.
That is, intrachecking and interchecking should be cleanly separatdioiatsintrachecking of
a code unit can be performed in the absence of other code unit. The dé#ig confined type
interface renders type checking fully modular, meaning that intracheddnde performed
without consulting the confined type interface of external classfiles.

Intrachecking of a class must be conducted prior to class preparafpis¢ztion 5.4.2].
This may be as early as when a class is defined [20, Section 5.3.5], or as thigng standard
bytecode verification [20, Section 5.4.1]. Two sets of checks are indol{® validating the
integrity of the confined type interface (Sect. 3.4.1); (2) validating if theylwdeach bytecode
method conforms to the method’s export type assertion (Sect. 3.4.2).

3.4.1 Integrity of Confined Type Interface

Besides trivial checks of well-formedness (Section 3.3), the followirecks apply when a
classA is intrachecked.

e If A:confined € &4, thenA must not be public (i.eG1 in Figure 2).
o If f:confined € &4, thenf mustnot be public or protected (i.€3 in Figure 2).

o If m:Ty(Th,Ts,..., Tx)T € E4, whereT = confi ned, thenm must not be public
or protected (i.e(¢3 in Figure 2).

o If m:Ty(T1,Ts,...,Tx)T € &4, andm is a native method, thehy =77 = ...
T, =T = 1 (i.e., A3 in Figure 1).

These are straightforward reformulation of source-level type ruligsi(€& 1 and 2) in terms of
confined type assertions.

3.4.2 Analysis of Bytecode Methods

The export type assertion of a bytecode method is valid only if every gnogroint in the
method body can be consistently assignedafined type stateélhe confined type state for a
program point is in turn an assignment of a confined type to every locatibe llocal variable
array and the operand stack. A consistent confined type state assigeraesolution to the
following constraint system:

1. The export type assertion of a bytecode method imposes typing cotstraihe starting
program point: the operand stack should be empty; the local variable strould be
initialized with confined type annotations prescribed in the formal parametef like
export type assertion.

2. Every JVM bytecode instruction imposes typing constraints on the cohifjipe states
at the program points immediately before and after and instruction.



Such a constraint system can be solved efficiently using a standardistalgorithm for data
flow analysis [24].

The typing constraints of JVM bytecode instructions are presented in ttii®rse The
effect of executing a bytecode instruction is presented in a notation paaaay [20]. For
example, theadd instruction pops two integers off the top of the operand stack, and subse-
qguently push their sum. This can be illustrated as follows.

...,il,ig — ...,i3

where integelis is the sum ofi; andis. Most of the JVM bytecode instructions manipulate
primitive type values, which trivially assume the capability typeand thus retain their stan-
dard Java semantics. For example, confined type states before andnaétdd instruction
must be constructed so that: L, i : 1, andiz : L. The typing constraints for most of the
bytecode instructions are trivial variants of this theme. The remaining ofdbifos presents
the typing constraints of bytecode instructions that are non-trivial ¢xoepto the standard
pattern. The goals are to illustrate how the design of confined type intdeeitiate modu-
lar intrachecking, and to points out subtleties not apparent in the highdesgetliption of the
previous sections. A more complete list of type rules can be found in Ajxpénd

Object creation. An instance of a confined Java reference type acquiresoits i ned
capability when it is created. From that point on, it can either be propagatein its defining
confinement domain, or be promoted to the more restrieth@nynous capability type when
itis pass as hi s to an anonymous method. Because of the design of the subtyping hierarchy
at no point shall such an instance acquire_theapability type.
new (B)

Operand Stack: ... — ...,v

Operation: Create a new instanaeof Java reference typB.

Type Constraints: Suppos€B) : T € Z4 andv : T,. ThenT <: T,,.

A caveat is that string literals are created to have bottomtypecause thpava. | ang. Stri ng
class has a default confined type interface.

Idc/ldc.w (utf8-literal)

Operand Stack: ... — ... v

Operation: Push &t ri ng literal v onto the operand stack.

Type Constraints: If v : T, then L <: T,. That is, the reference may assume any
type.

Basic interprocedural data flow. The following rules capture basic interprocedural data
flow in a bytecode method. They are the main engine behind the enforcefreeniroe-level
type rulesAl, C4 andC5 (see Figures 1 and 2). Note how the source-level type rules are
elegantly captured by the design of the subtyping hierarchy. Also, tvéspro of import type
assertions enables one to perform intrachecking without consultingrekttasses.

getfield (B. f)
Operand Stack: ...,0 — ... ,v



Operation: Retrieve the value of field (B. f) from object instance.
Type Constraints: Suppos€B.f):T € Z4,andv:T,. ThenT <:T,.

putfield (B. f)

Operand Stack: ...,0,v —
Operation: Store the value into the fieldB. f of object instance.
Type Constraints: Suppose€B.f):T € Z4,andv:T,. ThenT, <: T.

invokevirtual (B.m)

Operand Stack: ...,0,a1,4a0,...,ap — ...,V

Operation: Invoke method B.m) on object instance, passing arguments, as, ...,
ay. Any return valuev is pushed into the operand stack.

Type Constraints: SupposeB.m) : Ty(11,Ts,...,Tx)T € Za. Suppose further
thato : Ty, a; : T,,, andv : T,. ThenT, <: Ty, T,, <: T;, andT <: T,.
areturn

Operand Stack: ...,0 —
Operation: Return object referenaefrom current method.

Type Constraints: Suppose : T,, andm : To(T1,...,Tx)T € E4, wherem is the
current method. Thef, <: T.

Subtle cases. Two subtle cases are considered here. The following rule ensurestirae-
level type ruleC4 (Figure 2) is observed when type casting occurs.

checkcast B)

Operand Stack:  ...,0o — ... ,v

Operation: Attempt to cast object referenedo a reference of type B.

Type Constraints: Suppos€B) : T' € Z4, ando : T, andv : T,,. ThenT, <: T and
T <:T,.

When an exception is thrown, the confined type of the exception object is itlypladened to

the confined type of the exception handler’s catch type. As there is marfea which handler
will end up be catching an exception, one has to assume conservativiellyalanfined type

of the catch type isL. A constraint is therefore imposed to force all exceptions to have the
bottom typeLl.

athrow
Operand Stack:  ...,0 — o

Operation: Throw o as an exception.
Type Constraints: If o : T, thenT, <: L. Thatis,o: L.

Arrays. Special attention was paid to the handling of arrays. Specifically, an abjagt

is considered to be a carrier of its components. Consequently, an apeiistgonfined iff its
component is confined. This avoids the leaking of confined objects thrithegoropagation of
carrier arrays.
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anewarray(B)

Operand Stack: ...,n — ...,a
Operation: Create an array of component typd3 with n components.
Type Constraints: Suppos€B) : T € Z4 anda : T,. ThenT <: T,,.

aaload

Operand Stack: ...,a,7 — ... v
Operation: Load the reference componantrom array reference at indexi.
Type Constraints: If a : T, andv : T, thenT, <: T,,.

aastore

Operand Stack: ...,a,i,v —
Operation: Store reference valueinto array reference as the component at indéx
Type Constraints: If a : T, andv : T, thenT,, <: Tj,.

3.5 Incremental Interchecking and Lazy Dynamic Linking

Incremental interchecking. Interchecking involves the assurance of compatibility be-
tween confined type interfaces of code units that are dynamically linkedhiergt form

an application. The lazy dynamic linking of Java code implies that intercheckingt be
conducted in an incremental, carefully staged manner. Specifically, theviojachecks are
scheduled to occur at various stages of the dynamic linking process:

1. Class preparation.When a classl is prepared [20, Section 5.4.2], the following checks
are applied to ensure that the confined type interfacé isfconsistent with those of its
supertypes:

e Supposed extends or implements another reference tigeSuppose further that
A:T € E4andB : T" € Eg. ThenT’ <: T (i.e.,C2in Figure 2).

e Supposed declares a methad that overrides a method of the same signature in su-
pertypeB, sothatn : Ty(14, 1>, ..., Tp)T € Eqandm : TH(T],T5, ..., Tp)T" €
Ep. ThenT] <: T; for0 < i < kandT <: 7" (i.e., A2 in Figure 1). In essence,
the usual contravariant rule for method type subtyping is in play here [26]

2. Constant pool resolution. When a constant pool entry is resolved in claisghe fol-
lowing checks are applied to assure that the export type assertion cfshieed target
is consistent with the import type assertion of the constant pool entry.

e Suppose the constant pool entry being resolvédis Suppose furthe{B) : T' €
Za,andB : T" € Eg. Thenbothl <: T" andT” <: T. Thatis, T = T".

e Suppose the constant pool entry being resolvedig’). Suppose furthe(B.f) :
T € Ia,andf :T" € Eg. Thenbothl’ <: T andT”’ <: T. Thatis, T = T".

e Suppose the constant pool entry being resolvé®isn). If (B.m) : To(11,Ts, ..., Tx)T €
Za, andm : TH(T7,T5,...,T,)T" € &g, thenT; <: T/ for 0 < i < k, and
T' <: T. Again, the usual contravariant rule is in play here [26].

11



Preservation of laziness in dynamic linking. Supposef is a field declared in clas4,

so that the Java field type g¢fis B. Suppose further tha® : T' € &Ep. The intention,

of course, isto havg : T € &4, meaning that export type annotation faithfully reflects
whether the Java field type gfis confined. Yet, it is entire conceivable that 77 € &4,
whereT # T’. That is, it is entirely possible for annotations to lie. Similar anomalies can
be constructed for the formal parameters and return values of metmatisieh constructions
can work for both import type assertions and export type assertionfsx fwoughts, the Java
types of fields, formal parameters and return values are called auxyiaryas. For example,

B is an auxiliary symbol inA. To rephrase the anomaly, the annotations of auxiliary symbols
may not accurately reflect their confined-ness.

This seemingly dangerous state of affairs is in fact quite harmless. Tkerres that
the intrachecking type rules (e.qnew dictate that a new instance of Java reference tpe
acquires a capability that accurately reflects the confined-ndsslaforder for this instance of
B to successfully escape from its scope of instantiation, the import typdiassasf constant
pool entries in whichB is an auxiliary symbol must be accurate in order for intrachecking to
succeed. Similarly, in order for these constant pool entries to resobeessfully, the export
type assertions of the resolved targets must match the import type assextidctsdre known
to be accurate), thereby forcing the export type assertions to beasec@onsequently, any
unsafe annotation of auxiliary symbols will be detected by type checking iSlthe beauty
of treating confined-ness as a capability rather than an intrinsic propeaty)ava reference
type: it forces code producers not to lie if they want to have their codewt®d on the code
consumer environment.

An alternative design were to explicitly enforce strict conformance betwie actual
confined-ness of auxiliary symbols and their annotations. This alternddisign, however,
necessitates the loading of classfiles corresponding to the auxiliary syath@sous stages
of interchecking. These additional classloading activities will introduesteead that is known
to cause serious impact to the performance of an application [33].

The capability-based design adopted in this paper intentionally eschearsotagsloading
by a liberal annotation scheme. The scheme does not demand that anscéaitonately
reflect the confined-ness of auxiliary symbols. Yet, failure to do soesagisher intrachecking
or interchecking to fail, thereby protecting the integrity of dynamic linking. €smuently,
laziness of dynamic linking is preserved without sacrificing type safety.

4 Implementation Under the PVM Framework

This section reports the first implementattai confined types as a link-time protection mech-
anism for the JVM.

4.1 Embedding Confined Type Interfaces

To make confined types enforceable at link time, every classfile must aaropfined type
interface. This can be achieved by embedding a confined type intertacgassfiles through
the classfile attribute facility [20, Section 4.7]. Specifically, import and exype assertions

4This implementation can be found in the CVS repository ofAkgis VM Project.
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are embedded via a compact encoding oaf i nedTypes class attribute. A classfile may
carry at most one such attribute; the absence of the attribute in a classfdésgimat it assumes
a default confined type interface (Section 3.3). A simple Linux command-limehtas been
developed to take the role of the backend component in Figure 3, prowdiogvenient means
for manual annotation of classfiles. The classes examined in the case stuSertion 5 were
all annotated using this tool.

4.2 Pluggable Verification Module

An implementation of the intrachecking and interchecking proceduresidedan Section
3 must be incorporated into the dynamic linking process of the JVM in ordenftorae the
bytecode-level formulation of confined types. The Aegis VM [9] is anmopeurce JVM that
offers an extensible protection mechanism called Pluggable VerificationlgePVMs) [10,
11]. Unlike other implementations of the JVM, in which the link-time bytecode vatifio
service is a fixture that cannot be extended conveniently, the PVM frarkeiw based on
a modular verification architecture whereby bytecode verification is a phlggervice that
can be readily replaced, reconfigured and augmented. Third-parficaion services can
be safely incorporated into the dynamic linking process as a PVM. Thecatiifin service
exported by a PVM will be invoked prior to the preparation of a classfile FYM may also
schedule programmer-defined checks to occur at various points oftlhenit linking process.
The PVM framework also provides reusable facilities for easing the canigtnuof link-time
static program analyzers.

In our case, the intrachecking procedure of Section 3.4 has beepsetatzd in a PVM,
while the interchecking steps of Section 3.5 have been scheduled to takeapthe appropri-
ate points of dynamic linking. Implementation began after the formulation in Sectiess3
stabilized. The coding effort has been logged using a scheme akin to ithenBeSoftware
Process [17]. The first working version of the implementation consist926 Enes of moder-
ately commented C code, finished in 35 man-hours spanning over apprdyimagemonth.
A modest code complexity and rapid development cycle were achieveddsetee Aegis VM
provides reusable facilities to ease the development of link-time verificatiotices. The
compactness of the resulting implementation also suggests that link-time enfatagroen-
fined types involves only a modest increase in the size ofrtltted computing base (TCB)
thereby preserving the tractability of TCB verification and validation.

5 Secure Cooperation

A fundamental security challenge in dynamically extensible software systambden the
facilitation of secure cooperation among mutually suspicious code units withgathe appli-
cation [27, 29]. This section illustrate how a class may exploit the bytecegbflmulation

of confined types to impose confinement policies on data structures itsshaheuntrusted
peer classes. Specifically, four tactics will be discussed:

1. Protection by access contractsConfinement policies are embedded in confined type
interfaces, specifying a contract between a class and its untrustedoratiads.
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2. Safe dynamic linking. The interchecking type rules in Section 3.5 (constant pool reso-
lution) ensure that the contract is honored by peer collaborators.

3. Trust inspiration. To inspire trust, collaborating code units must formulate matching
confined type interfaces. The intrachecking type rules in Section 3.4emnthat the
collaborators indeed live up to their promises.

4. Secure software extensionDynamic software extension is enabled in Java through a
combination of dynamic loading and subtyping. The interchecking type rulesatiod
3.5 (class preparation) ensure that dynamically loaded software exterfsomor the
confinement policies prescribed by their supertypes.

This section presents a case study that illustrates the above tactics.

5.1 Protection Through Import Type Assertions

Suppose an application claski ce is to share wittBob an instance oResour ce that she
owns.Al i ce does so by passing tiResour ce object as an argument to the methsdthr e
exported byBob, with the mutual understanding thBbb is not to leak thisResour ce
reference outside of the defining packagé\bf ce:

package domai n;
confined class Resource { ...}

public class Alice {
static Resource resource = new Resource();
public static void nmain(String[] args) {
Bob. share(resource);

}
}

SupposeAl i ce cannot trust thaBob will uphold his end of the contract. To ensure
thatBob does not leak th&®esour ce reference accidentally or maliciously, the classfile of
Al i ce can be annotated with@nf i nedTypes attribute that contains the followinmport
type assertion

(Bob. share) : L(confined)L

When the constant pool entfBob. shar e) is resolved in clasél i ce, interchecking will
make sure that the resolved target has a matching export type assertipmothses to confine
the argument reference. The Aegis VM will thus refuse to Bk ce with any implementa-
tion of Bob that does not honor the import type assertion specifiefll byce

5.2 Inspiring Trust by Export Type Assertions
Suppose the clagob indeed provides a non-leaking implementation ofsher e method:
package domai n;

public class Bob {
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static Resource resource;
public static void share(Resource resource) {
Bob. resource = resource;

}
}

To inspire trust, the classfile &b must be annotated properly. Specifically, the confined
type interface oBob must contain the followingxport type assertion

share: L(confined)L

When the clas8ob is intrachecked, data flow analysis will be conducted on the body of the
shar e method to ensure that it lives up to its promise.

To appreciate the robustness of trust inspiration, consider a versBobah whichshar e
exposes th&®esour ce reference:

package domai n;
public class Bob {
public static Object |eak;
public static void share(Resource resource) {
| eak = resource;

}
}

The shar e method stores th®esour ce reference into a public fielteak, thereby
exposing the reference to access from outside oflthreai n package. Without further an-
notation,Al i ce will not link with Bob due to the incompatibility between the import type
assertion of Bob. shar e) in Al i ce and the export type assertion siiar e in the default
confined type interface dob. Yet, Bob maylie by forging a confined type interface with an
export type assertion that falsely claims thatResour ce argument iconf i ned:

share: L(confined)L

When the Aegis VM performs intrachecking, the data flow analyzer will discthat reference
leaking occurs in the body afhar e, and thus taggob as unsafe.

5.3 Secure Software Extension

Consider a more interesting example, in which the chddsce shares th&esour ce refer-
ence with a dynamically loaded software extension:

package domai n;
public class Alice {
Resource resource = new Resource();
public static void main(String[] args) throws Throwabl e {
Cass C = Cass.forNane(args[0]);
Bob b = (Bob) C new nstance();
b. share(resource)

}
}
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In this exampleBob is an interface specifying the sharing protocol.

package domai n;
public interface Bob {

voi d share(Resource resource);
¥

To protectAl i ce, the classfile oBob is annotated to ensure that any implementation of
the shar e method must confine theef er ence argument. SpecificallyBob is endowed
with the following export type assertion:

share: L(confined)L

Suppose the clagghar | i e provides a non-compliant implementationRdb. shar e:

package domai n;
public class Charlie inplements Bob {
public static Resource | eak;
public void share(Resource resource) {
| eak = resource;

}
}

If Charli e is not annotated, and thus assumes a default confined type interface, then
the export type assertion shar e will violate the method overriding rule scheduled to be
checked at the time of class preparation (Section 3.5). Alternativelghair | i e falsely
claims the following export type assertion:

share: L(confined)L

then intrachecking will detect the inconsistency. In both cases, this faulteimgntation of
Char | i e will be rejected.

6 Concluding Remarks

6.1 Related Work

Language-based security. Language-based protection mechanisms employ programming
languages technologies such as static analysis, program transfornaatibtype systems to
address the security challenges of complex software systems [28]. Egmprk includes
software-based fault isolation [32], proof-carrying code [23], istimeference monitors [30]
and typed assembly languages [22]. Our long term research goal iet@ddnguage-based
protection mechanism in which access control policies are defined vibitgptypes. The
present work is a helpful step in better understanding the structureagfabiity type system

for JVM bytecode.
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Confined types. Confined types [31, 15, 34] is an example of alias control type systems
[16, 21, 2, 25, 6, 4, 1, 3]. The common goal of these type systems is tattre proliferation

of side effects due to aliasing in object-oriented programs. Confined &mkthe closely re-
lated ownership types [6] offer fresh interpretations of encapsulaiontion with pertinence

to language-based access control. Reformulating confined types toXdMdytecode opens

up a number of issues that are not addressed in the original souatdéelexulation: backward
compatibility, modularity, and lazy dynamic linking. Our capability-based formutations
confined types into a practical protection mechanism by addressing thie islsaes

Capability types. The idea of using typing disciplines to model capabilities has been
around for some years (e.g., [4]). Existing capability type systems taogetes or hypo-
thetical languages in a closed environment. A contribution of this paper istimeifation of a
capability type system for JVM bytecode that takes into account the dynarkiiedisemantics

of Java and the threat of untrusted software extensions.

Modular verification. The PVM framework [10] of the Aegis VM [9] is based on a mod-
ular verification architecture called Proof Linking [11]. The correcsnesProof Linking,
especially its interaction with lazy dynamic linking, has been studied rigoroligly The cor-
rectness proof has been generalized to account for multiple class$da8gr The JAC type
system [18] is another type system that has been implemented in the PVM foakné®].
The reformulation of confined types for the JVM bytecode is conceptualhe ingolved than
that of JAC.

6.2 Future Work

The present work is being extended in two directions. Firstly, the authompieraxg a re-
finement of confined types call@liscretionary object confinemejit4], in which confinement
domains are stratified into a hierarchy of partially ordered trust levels. bbo@dary of a
confinement domain is semi-permeable: objects can escape from onesowetfiindomain to
another if the trust relation permits it, or when the escape is explicitly grantddsbsetion. It
turns out discretionary object confinement can be applied to build a minimajiabdity sys-
tem for the JVM. Secondly, the author is exploring a generic framewaritefining capability
type systems for JVM bytecode. The goal is to provide a meta languagedgrammers to
specify their own capability type systems. The specification is then compiled intk-trtie
type checker that can be readily integrated into a JVM.

6.3 Conclusion

The first formulation of confined types for JVM bytecode is proposedtbke link time en-
forcement. The formulation is backward compatible, capability-based, modnia interop-
erable with lazy dynamic linking. A prototype of the link-time type checker haslvealized
in the framework of Pluggable Verification Modules as a third-party vetificeservice of the
Aegis VM. The application of this formulation of confined types to achieverimn fof secure
cooperation has been illustrated in a case study.
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A Confined Type Rules for JVM Bytecode Instructions

aaload

Operand Stack: ...,a,i — ... ,v
Operation: Load the reference componanfrom array reference at index:.
Type Constraints: If a : T, andv : T, thenT, <: T,,.

aastore

Operand Stack: ...,a,i,v —
Operation: Store reference valueinto array reference as the component at indéx
Type Constraints: If a : T, andv : T, thenT,, <: Tj,.

aconstnull

Operand Stack: ... — ... v
Operation: Push anul | referencey onto the operand stack.
Type Constraints: If v : T, then L <: T,. Thatis, thenul | reference may assumes
any type.
anewarray(B)
Operand Stack: ...,.n — ...,a
Operation: Create an array of component typg3 with n components.
Type Constraints: Suppos€B) : T € Z4 anda : T,. ThenT <: T,,.
areturn
Operand Stack:  ...,0 —
Operation: Return object referenaefrom current method.
Type Constraints: Suppose : T,, andm : Ty(T4,...,Tx)T € E4, wherem is the
current method. Thef, <: T.
athrow

Operand Stack: ...,0 — o
Operation: Throw o as an exception.
Type Constraints: If o : T, thenT, <: 1. Thatis,o: L.

checkcast B)
Operand Stack:  ...,0 — ...,v

Operation: Attempt to cast object referenedo a reference of type B.

Type Constraints: SupposeB) : T' € Z4, ando: T, and andv : T,,. ThenT, <: T
andT <: T,.

getfield(B. f)

Operand Stack:  ...,0 — ... v
Operation: Retrieve the value of field (B.f) from object instance.
Type Constraints: Suppos€B.f): T € Z4,andv:T,. ThenT <:T,.
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getstatic(B. f)

Operand Stack: ... — ... ,v
Operation: Retrieve value from the static field B. f).
Type Constraints: Suppos€B.f): T € Z4,andv:T,. ThenT <:T,.

Idc/Idc.w (utf8-literal)

Operand Stack: ... — ...,v
Operation: Push &t ri ng literal v onto the operand stack.
Type Constraints: If v : T, then 1 <: T,. That is, the reference may assume any
type.
multianewarray (B), k

Operand Stack: ...,n1,n2,...,nx — ...,a

Operation: Create a multidimensional arrayof array typeB with space allocated for
the firstk dimensions.

Type Constraints: Suppos€B) : Tigy, € Za. ThenT g, <:Tj,.
new(B)

Operand Stack: ... — ...,v

Operation: Create a new instaneeof Java reference typB.

Type Constraints: Suppose€B) : T € Z4 andv : T,. ThenT <: T,,.
putfield (B. f)

Operand Stack: ...,0,v —

Operation: Store the value into the fieldB. f of object instance.

Type Constraints: Suppos€B.f):T € Z4,andv:T,. ThenT, <: T.
putstatic(B. f)

Operand Stack: ...,0,v —

Operation: Store the value into the static field3. f.

Type Constraints: Suppos€B.f):T € Z4,andv:T,. ThenT, <: T.
invokeinterface(B.m)

Operand Stack: ...,0,a1,4a9,...,ax — ...,V

Operation: Invoke interface metho@B.m) on object instance, passing arguments,
as, ...,ai. Any return valuev is pushed into the operand stack.

Type Constraints: SupposeB.m) : To(Th,T5,...,Tx)T € Z4. Suppose further
thato : Ty, a; : T,,, andv : T,,. ThenT, <: Ty, T,, <: T;, andT <: T,.

invokespeciak B.m)

Operand Stack: ...,0,a1,0a9,...,ax — ...,V
Operation: Invoke private method, instance initializer, or superclass metBoch) on
object instance, passing arguments, ao, ..., ag. Any return valuey is pushed

into the operand stack.
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Type Constraints: SupposeB.m) : To(Th,T5,...,Tx)T € Z4. Suppose further
thato : Ty, a; : T,,, andv : T,,. ThenT, <: Ty, T,, <: T;, andT <: T,,.

invokestatic(B.m,)

Operand Stack: ...,a1,a9,...,ap — ...,v
Operation: Invoke static methodB.m) with argumentsiy, as, ..., ax. Any return
valuewv is pushed into the operand stack.

Type Constraints: SupposéB.m) : L(T1,Ts,...,Tx)T € Z,. Suppose further that
a; : T,, andv : T,,. ThenTy, <: T; andT <: T,,.

invokevirtual (B.m)

Operand Stack: ...,0,a1,a2,...,ap — ...,V
Operation: Invoke method B.m) on object instance, passing arguments, as, . ..,
ag. Any return valuev is pushed into the operand stack.

Type Constraints: SupposeB.m) : To(T1,T5,...,Tx)T € Z4. Suppose further
thato : Ty, a; : T,,, andv : T,. ThenT, <: Ty, T,, <: T;, andT <: T,.
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