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Abstract

Secure cooperation is the problem of protecting mutually suspicious code units from one another. The notion of
capabilities is an effective means for facilitating secure cooperation in dynamically extensible software systems, in
which both trusted and untrusted code may run alongside each other. Thispaper proposes a lightweight, statically
enforceable type system, Discretionary Object Confinement (DOC), for modeling capabilities with abstract interface
types. The type system can be seen as a discretionary variant of confined types. Formulated at the bytecode level,
the type system is enforceable at link time, by the code consumer. Type checking does not involve any iterative flow
analysis, and is therefore highly efficient. A link-time type checker has been implemented for the Java platform under
the framework of Pluggable Verification Modules. The simplicity of the type system imposes only a modest increase
in size to the trusted computing base. Although DOC enjoys an efficient type checking procedure, the inference of
DOC annotations from legacy code base is NP-complete. The practical implication of this negative result is discussed.

1 Introduction

Secure cooperation [27, 24] is the problem of protecting mutually suspicious code units within the same execution
environment from one another. Peer code units collaborate by sharing object references. The challenge is to allow the
owner of an object reference to impose access constraints over those object references that are shared with an untrusted
peer. Secure cooperation is thus an enabling infrastructure for dynamically extensible software systems such as mobile
code language environments, scriptable applications, andsoftware systems with plug-in architectures, in which both
trusted and untrusted code units may run alongside each other.

The notion of capabilities [7, 6] provides an effective means for supporting secure cooperation. A capability is
traditionally understood as an object reference plus a set of access rights that can be exercised through the reference.
One way of implementing capabilities in an object-orientedprogramming environment is to employ a combination of
the proxy design pattern [15] and load-time binary rewriting [19]. Such a solution approach results in proliferation
of small objects, non-trivial performance overhead, and confusion of object identity. A more elegant approach is to
embed the notion of capabilities into a statically checkable type system. In acapability type system[3], every object
reference is statically assigned a capability type, which prescribes what operations can be performed through the object
reference. A capability type may impose on the object reference a set of operational restrictions that constrains the
way the underlying object may be accessed.

In this paper, we explore the following question:What is the least perturbation to the Java programming language
that allows us to build a rudimentary but useful capability type system?A naive approach would be to exploit abstract
interface types (e.g., abstract classes and interfaces in Java) as capability types. An abstract interface exposes only a
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limited subset of the functionalities provided by the underlying object, and thus an object reference with an abstract
interface type can be considered a capability of the underlying object. A code unit wishing to share an object with its
peer may grant the latter a reference properly typed with a capability interface. The receiver of the reference may then
access the underlying object through the constrained interface. This naive scheme, however, has two problems:

1. Capability Amplification. The possibility of unrestricted downcasting allows a malicious receiver to amplify
access rights. All the functionalities of the underlying object can be fully exposed if its concrete class identity
is known to the a malicious peer.

2. Capability Leaking. A peer may freely acquire capability instances (e.g., through instantiation). This is prob-
lematic when capabilities are supposed to be owned and managed by an abstraction, through which clients obtain
legitimate capability instances.

A careful examination of the research problem reveals its deeper tie with the recent line of work on rethinking
the notion of encapsulation in object-oriented programming languages [23, 5, 29, 17, 4, 2, 1, 26, 25]. Influenced
by the work of Viteket al [29, 17, 30], this paper proposes a lightweight, staticallyenforceable type system called
Discretionary Object Confinement (DOC) that fully supportsthe use of abstract interface types as capability types.
The type system can be seen as a discretionary variant of confined types [29, 17, 30], in which the boundaries of
confinement domains are semi-permeable. Specifically, the space of Java reference types is stratified into a hierarchy
of confinement domains, partially ordered by a binary trust relation. Java reference types declared inside a confinement
domain are seen from the outside as capability types. So longas a capability remains inside its defining confinement
domain, it has the same semantics as a regular Java reference. However, once a capability escapes to an untrusted
domain, its concrete class identity will be concealed. Fromthen on, it can only be accessed through a non-bypassable
abstract interface, thereby avoiding capability amplification. To control capability propagation, an untrusted domain is
not allowed to acquire a capability unless it is explicitly granted one by argument passing. Capability transfer is thus
moderated through a combination of mandatory and discretionary control. The DOC type system supports a useful
form of secure cooperation in the presence of dynamically loaded software extensions. In a related work [14], it is
also shown that DOC can be used as the foundation for buildingmore sophisticated capability type systems in the Java
platform.

The contributions of this paper are the following:

1. A lightweight, statically enforceable type system, DOC,was proposed to support the use of abstract interface
types to model capabilities. We demonstrate the utility of the DOC type system in facilitating a form of secure
cooperation in the context of dynamically extensible software systems.

2. The DOC type system is formulated at the bytecode level, and is thus enforceable at link time by the code
consumer. This feature is crucial in the context of dynamically extensible software systems, in which untrusted
extensions may be produced by a malicious compiler.

3. The DOC type system is designed to be extremely lightweight, so that type checking involves only a linear-time
scan of the target classfile: no iterative flow analysis is involved. This lightweight design is desirable because it
incurs only a modest increase to the size of the trusted computing base.

4. The link-time type checking procedure has been implemented in an open source JVM, the Aegis VM [8], which
provides an extensible protection mechanism, Pluggable Verification Modules [10], for the safe introduction of
third-party verification services into the dynamic linkingprocess of Java.

5. The problem of inferring DOC annotations from legacy codehas been characterized to be NP-complete. Prelim-
inary experience in employing heuristic approaches to solve the DOC type inference problem suggests that the
current formulation of the problem may be under-constrained. We believe that a more constrained formulation
is in order.

The rest of this paper is organized as follows. Sect. 2 gives an overview of DOC, and demonstrates its utility.
Sect. 3 presents a bytecode-level formulation of DOC. Sect.4 reports an implementation of a link-time type checker
for DOC. Sect. 5 explores the problem of inferring DOC annotations from legacy code. The paper concludes with
discussions, related work, future work, and a summary.
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public abstract class Character { /* Common character behavior */ }

public interface Observable {
Context getContext(); // e.g., forest, river, bad land
Mode getMode(); // e.g., combating, regenerating, scouting
Activity getActivity(); // e.g., defend, attack, move towards
Character getTarget(); // e.g., target of activity

}

public abstract class Hero extends Character implements Observable {
protected Sidekick observers[];
public final void attach(Sidekick sidekick) { /* Attach sidekick */ }
public final void detach(Sidekick sidekick) { /* Detach sidekick */ }
public final void broadcast() {
for (int i = 0; i < observers.length; i++)

if (observers[i] != null)
observers.update(this);

}
}

public abstract class Sidekick extends Character {
public abstract void update(Observable hero);

}

public class GameEngine {
// Manage life cycle of characters

}

Figure 1: Regular set up of hero-sidekick game.

2 Discretionary Object Confinement

2.1 A Motivating Example: Observer Pattern

2.1.1 Setting the Stage.

Suppose we are developing a role-playing game. Over time, a hero (e.g., Bat Man) may acquire an arbitrary number
of sidekicks(e.g., Robin). A sidekick is an AI-controlled character whose behavior is a function of the state and
behavior of the hero to which it is associated. For example, when the health of the hero is low, or when the hero is
attacked by a villain of incomparably higher hit points, then adefensivesidekick may attempt to block the movement
of the villain and take the hit points for the hero. Alternatively, when the hero is attempting a long-range offense, then
a scoutsidekick may automatically move towards the target to improve visibility. A group of scout sidekicks may
also establish a defense perimeter when the hero is regenerating. Along the same vein, when the hero is attacking,
an offensivesidekick may augment the fire power of the hero . . . . The maximum number of sidekicks that may be
attached to a hero is a function of its type and experience. A hero may also choose to adopt or orphan a sidekick at
any point of time. New sidekick and/or hero types may be introduced in future releases of the game.

A standard set up of the game is to employ the Observer pattern[15] to capture the dynamic dependencies between
heros and sidekicks, as is shown in Fig. 1, where sidekicks are observers of heros. TheGameEngine class is respon-
sible for creating instances ofHero andSidekick, and managing the attachment and detachment ofSidekicks.

2.1.2 Complications.

The set up in Fig. 1 would have worked beautifully had it not been the following complication:a requirement of the
game is such that users may dynamically download new hero or sidekick types from the internet during a game play.
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The introduction of dynamic software extensions significantly complicates the security posture of the application.
Specifically, the developer must now actively ensure fair game play by eliminating the possibility of cheating through
the downloading of malicious characters.

Capability Amplification: Upon receiving aHero object through theObservable argument of theupdate
method, a maliciousSidekick may then downcast theObservable reference to aHero reference, thereby
exposing thesidekick management interfaceof theHero object. This allows the maliciousSidekick to attach
powerful sidekicks to theHero object, thereby turning theHero object into a more potent character.

Capability Leaking: A maliciousHero can augment its own power by simply creating new instances ofconcrete
Sidekick subclasses and attaching these instances to itself.

A number of lessons may be learned from the above archetypical cheats.

Capabilities. Notice that aHero exports two interfaces: (i) a sidekick management interface (i.e.,Hero), and (ii) a
state query interface (i.e.,Observable). While the former is intended to be used by theGameEngine, the latter is
a limited interface through whichSidekicks interact withHeros. In short, anObservable reference to aHero
object is supposed to be acapability: i.e., a statically typed reference with a concealed class identity. Unfortunately,
standard Java provides no provision for protecting capabilities. Access rights can be readily amplified by downcasting,
as we have seen in the first cheat.

Confinement. To theHeros, Sidekicks are also capabilities: theSidekick interface exposes theupdate
method, the invocation of which augments the behavior of aHero. The second cheat exploits the weakness of
standard Java semantics, wherebyHeros may freely acquireSidekick capabilities through object instantiation.
What is needed is a notion ofconfinement domain, so that leaking of capabilities can be controlled.

Trust. It is intended thatHero andSidekick belong to two distinct confinement domains. Amplification and leak-
ing of capabilities should therefore be restricted. In contrast,GameEngine is by design responsible for managing the
life cycle ofHeros andSidekicks, and as such it requires full access to everything belonging to the two confine-
ment domains. That is, restrictions on amplification and leaking of capabilities should not apply toGameEngine.
This highlights the need to have a discriminating confinement domain boundary, so that full access may be given to
trusted confinement domains.

Capability Granting by Discretion. There are times in which capability granting should be allowed even between
mutually distrusting confinement domains. For example, supposeObservable belongs to the same confinement
domain asHero. ThenObservable is a capability type from the perspective ofSidekick, and crossing of
confinement boundary is not supposed to be allowed. Broadcasting of change would then be impossible. Therefore, a
discretionary means for capability granting via argument passing should be allowed.

2.2 Enter Discretionary Object Confinement

2.2.1 Basic Concepts.

Discretionary Object Confinement formalizes the features suggested in the analysis above. Specifically, DOC is based
on the following concepts:

1. The space of Java reference types is partitioned into a number of confinement domains, so that every Java
reference type belongs to exactly one confinement domain.

2. If Java reference typesA andB both belong to the same confinement domain, thenA may freelyacquirea
reference of typeB. In this case,B is said totrust A. Formally, reference acquisition occurs when one of the
following happens:

• An exception handler inA with catch typeB catches an exception.

4



• A creates an instance ofB.

• A casts a reference to typeB.

• A invokes a method with return typeB.

• An object reference is passed to a method declared inA via a formal parameter of typeB.

• A reads a field with field typeB.

• An object reference is stored into a field ofA with field typeB.

3. The confinement domains are organized into a partially orderedsubsumption hierarchy. If one confinement
domain subsumes another, then reference types belonging tothe subsumed domain trust those belonging to the
subsuming domain. This means that reference typeA may freely acquire a reference of typeB if the confinement
domain to whichB belongs is subsumed by that ofA.

4. If C does not trustA, then a reference of typeC is said to be acapability for A. A Java reference typeA may
acquire a capability of typeC only through the following means:

• Capability granting:A Java reference typeB invokes a method declared inA, passing an argument via a
formal parameter of typeC.

• Capability sharing:A Java reference typeB belonging to the same confinement domain asA shares a
capability of typeC with A when one of the following happens:

– B invokes a method declared inA, passing an argument via a formal parameter of typeC.
– A invokes a method declared inB with return typeC.
– A reads a field declared inB with field typeC.
– B stores a reference into a field declared inA with field typeC.

In no other ways shallA acquires a capability.

5. Capabilities provide the only means for untrusted types to access methods declared in the capability type. Specif-
ically, if C is a capability forA (i.e., C does not trustA), thenA shall not invoke static methods declared in
C.

In summary, the following invariant is maintained:

Capability Confinement. A class must not acquire a capability unless it is explicitlygranted one via argument pass-
ing, or it acquires the capability through sharing with another class belonging to the same confinement domain.

When a capability is granted, it roams freely within the confinement domain. However, escape from a confinement
domain is only possible when the escaping reference does notescape as a capability, or when it escapes as a capability
via argument passing.

2.2.2 Addressing the Security Challenges.

The security challenges of capability amplification and leaking can be fully addressed by DOC. Specifically, the
confinement domains and subsumption hierarchy as shown in Fig. 2 can be defined for the hero-sidekick game
application. BecauseHeroDomain and SidekickDomain are incomparable in the subsumption hierarchy,Hero
andSidekick are capabilities of each other. Consequently, not only areSidekicks not allowed to amplify an
Observable reference to aHero capability (i.e., capability amplification prevented),Heros are also forbidden
to create newSidekick capabilities (capability leaking prevented). Furthermore, the subsumption hierarchy also
rendersGameEngineDomainthe most subsuming confinement domain, thereby allowingGameEngine to have full
access to the reference types belonging to the rest of the confinement domains. Lastly, the provision for capability
granting makes it legitimate to passObservable references fromHero to Sidekick when an update is broad-
casted.

Notice that we have eschewed giving concrete syntactic devices for specifying domain membership and subsump-
tion relationship. A diagram such as Fig. 2 is considered sufficient for now. More details concerning the embedding
of such information into Java classfiles will be given in Sect. 4.1.
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Figure 2: Subsumption hierarchy for the hero-sidekick application. Arrows represent “subsumed-by” relationships,
meaning that unconstrained reference acquisition may occur along the direction of the arrows.
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Figure 3: Processing of DOC Annotations

3 The DOC Type System for Java Bytecode

In the context of the JVM, in which code units bind via dynamiclinking, program verification that is performed
against source code, or administrated only by the code producer, cannot be trusted. Therefore, if Discretionary Object
Confinement is to be used for enabling secure cooperation, itmust be enforceable at the bytecode level, by the code
consumer. This section provides a systematic presentationof the bytecode-level typing discipline for DOC. The section
begins with the fixing of assumptions and notations (Sect. 3.1). The notions of confinement domains, subsumption
hierarchy, trust relation, and capabilities are then introduced formally (Sect. 3.2). The bulk of the section outlinesthe
type constraints for DOC (Sect. 3.3–3.4).

3.1 Assumptions and Notations

To fix thoughts, notice thatthreetype systems are involved in the present discussion: (1) thestandard Java type system,
(2) the source-level DOC annotation scheme as described in the previous section, and (3) the bytecode-level DOC type
system to be presented in this section.

Firstly, there is the standard Java type system. We useA, B andC to denote a Java reference type, which is a class,
interface, or array type in the standard Java type system. Methods and fields are denoted bym andf respectively. A
constant pool reference1 is denoted by its referent’s signature delimited by angled brackets (〈·〉). For example,〈B〉
denotes a constant pool class reference that resolves to theJava reference typeB. Along a similar vein,〈B.f : C〉
denotes a constant pool field reference that resolves to a field f declared inB with field typeC, while 〈B.m : C〉
denotes a constant pool method reference that resolves to a methodm declared inB with method return typeC.

Secondly, there is the source-level DOC annotation scheme.We assume that Java source files are properly anno-
tated so that the confinement domain to which a class belongs is indicated by some backward-compatible syntactic
devices such asjavadoc taglets/doclets or JSR 175 metadata facility.

Thirdly, there is the bytecode-level DOC type system. We envision a programming environment (Fig. 3) in
which domain membership and subsumption relationship information embedded in Java source files is extracted by a
compiler frontend, translated into classfile annotations,and subsequently injected into the classfiles generated by the

1The symbol table of a classfile is called a constant pool [22].
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standardjavac compiler. Type checking will be conducted by the JVM at link time, against classfiles, at the bytecode
level. It is the detailed typing discipline of this bytecode-level DOC type system that is presented in this section.

3.2 Confinement Domains, Subsumption, Trust, and Capabilities

Confinement Domains. Every Java reference type belongs to exactly oneconfinement domain. We useD andE to
denote confinement domains, and writeC ∈ D when Java reference typeC belongs to confinement domainD.

Subsumption Hierarchy. A binary subsumption relationI is defined over the class of confinement domains. The
relationI is a partial ordering, and as such it is reflexive, transitive, and antisymmetric. We say thatD is subsumed
byE wheneverD I E . Intuitively, instances of Java reference types belongingtoD may be freely acquired by a class
belonging toE . We also postulate that there is aroot domain> so that> I D for all D. All Java platform classes are
members of the root domain>. This means they can be freely acquired by classes from all confinement domains2.

Trust Relation. The subsumption hierarchy induces a natural ordering of Java reference types. Specifically, if
B ∈ D, A ∈ E andD I E then we writeB . A, and say thatB trustsA, meaning thatA may freely acquire instances
of B. By definition. is reflexive and transitive (but not antisymmetric). We thuswrite A ./ B if both A . B and
B . A.

Capabilities. An object reference with typeC is said to be acapability for A if C . A does not hold. Capability
acquisition must take the form of capability granting or capability sharing.A andB may share capabilities ifA ./ B.

3.3 Type Constraints

To enforce the Capability Confinement Invariant, the following constraints are imposed on classfiles.

C1 If A extends or implementsB thenB . A must hold.

Commentary. This rule forces the trust relation to be consistent with theJava type hierarchy. As a result, Java
type widening never amplifies capability. This design renders iterative flow analysis unnecessary at link
time, thereby allowing us to obtain a very small increase in the size of trusted computing base in the
implementation of a link-time type checker (Sect. 4.2).

C2 If a bytecode method declared inA provides an exception handler for exception type〈B〉, thenB . A must hold3.

Commentary. Exception handlers may not intercept capabilities.

C3 If a bytecode method declared inA contains the bytecode instruction “new 〈B〉”, thenB . A must hold.

Commentary. Capability instantiation is not permitted.

C4 If a bytecode method declared inA contains the bytecode instruction “checkcast〈B〉”, thenB . A must hold.

Commentary. Capability amplification is not allowed.

C5 If a bytecode method declared inA contains the bytecode instruction “invokestatic 〈B.m :C〉”, thenB . A must
hold.

Commentary. Untrusted types may only access methods declared in a capability type via a capability instance.

2Notice that the focus of this paper is not to protect Java platform resources. Instead, our goal is to enforce application-level security policies that
prescribe interaction protocols among dynamically loaded software extensions. The organization of the subsumption hierarchy therefore reflects
this concern: Java platform classes and application core classes belong respectively to the least and the most subsuming domain.

3Thecatch type field [22, Sect. 4.7.3] of aCode attribute specifies the target exception type of an exception handler in the corresponding
bytecode method. If the field assumes a zero value, then the handler is a “catch-all” handler. The corresponding exception type is therefore
java.lang.Throwable, which belongs to the root confinement domain. In this case, thesubsumption requirement trivially holds.
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C6 If a bytecode method declared inA contains the bytecode instruction “invoke* 〈B.m :C〉, whereinvoke* is one
of invokeinterface, invokespecial, invokestaticor invokevirtual , then eitherC . A or A ./ B must hold.

Commentary. Reference acquisition through method return is permitted only if the the acquired reference is not
a capability, or if the acquisition is achieved through capability sharing. Notice that no data flow restriction
is placed on argument passing: capability granting is enabled.

C7 If a bytecode method declared inA contains the bytecode instruction “get* 〈B.f : C〉”, where get* is one of
getfieldor getstatic, then eitherC . A or A ./ B must hold.

Commentary. Reference acquisition through field reading is permitted ifthe acquired reference is not a capa-
bility, or if the acquisition is achieved through capability sharing.

C8 If a bytecode method declared inA contains the bytecode instruction “put* 〈B.f : C〉”, whereput* is one of
putfield or putstatic, then eitherC . B or A ./ B must hold.

Commentary. Reference acquisition is permitted through field writing ifthe acquired reference is not a capa-
bility, or if the acquisition is achieved through capability sharing.

Notice from the above list that all means of capability acquisition are rejected except for capability granting and
capability sharing. The Capability Confinement Invariant is therefore enforced.

3.4 Handling Array Types

The array typeC[ ] is considered to be a carrier of Java reference typeC, and as such it is considered to be as capable
asC. Therefore, the following relation is imposed to avoid leaking of C via aC[ ] carrier:

C ./ C[ ]

With this, the type constraints in the previous section willwork with array types also. Although propagation of ca-
pability carriers is carefully moderated, creation of capability carriers does not amplify access rights. Consequently,
empty arrays can be freely instantiated using bytecode instructionsanewarray or multianewarray without violat-
ing the Capability Confinement Invariant. By a similar token, retrieval of a capability from a carrier or storage of a
capability into a carrier should be freely allowed once the carrier is acquired (this is just a form of capability shar-
ing). Therefore, there is no need to impose further type constraint on bytecode instructionsaaloadandaastore. An
implementation, however, may (out of paranoia) choose to treat instantiation of capability carriers in the same way
as capability instantiation, thereby obtaining a slightlymore stringent set of type rules. The implementation efforts
described in this paper assume the more liberal posture.

4 Type Checking Procedure

This section reports the implementation strategy we have employed to realize the bytecode-level DOC type system in
a JVM. Two subtasks are involved. Firstly, one has to decide how confinement domains, the subsumption hierarchy,
and domain membership are embedded in Java classfiles and represented at run time inside a JVM. Secondly, one has
to decide how to incorporate a link-time type checking procedure into the dynamic linking process of the JVM so as
to enforce DOC type constraints. The two topics are covered in Sect. 4.1 and 4.2 respectively.

4.1 Type Annotations

4.1.1 Representation.

It is desirable not to introduce additional run-time data structure for tracking domain membership and subsumption re-
lationship in the JVM. Confinement domains are therefore represented as subinterfaces of the interface
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public interface CharacterDomain implements org.aegisvm.doc.Root { }
public interface HeroDomain implements CharacterDomain { }
public interface SidekickDomain implements CharacterDomain { }
public interface GameEngineDomain implements HeroDomain, SidekickDomain { }

Figure 4: Interface hierarchy representing the subsumption hierarchy of the hero-sidekick game application.

org.aegisvm.doc.Root, which in turn represents the root domain>. Subsumption is therefore naturally in-
duced by subinterfacing, so thatE being a subinterface ofD signifiesD . E . For example, the subsumption hierarchy
depicted in Fig. 2 can be codified in the interface hierarchy shown in Fig. 4. The acyclicity of subinterfacing automat-
ically guarantees that subsumption represented in this wayis antisymmetric.

We use a class attribute [22, Sect. 4.7] with attribute nameDOC to declare the confinement domain of a given class.
Specifically, a classfile may be annotated in three ways:

1. A classfile with noDOC attribute defines a reference type that belongs to the root domain>. Such a reference
type is not a confinement domain.

2. An emptyDOC attribute identifies a reference type to be a confinement domain. Such a reference type belongs
to the root domain>.

3. A non-emptyDOC attribute defines a reference type that does not correspond to a confinement domain. TheDOC
attribute holds a valid index into theinterfaces array of the classfile structure. The referenced interface
identifies the confinement domain of the reference type4.

To ensure that classfile annotations are well-formed, an additional constraint is introduced:

C0 The following must hold:

1. The classfile corresponding to the root domain must be explicitly identified as a confinement domain (i.e.,
by an emptyDOC attribute).

2. The declared confinement domain of a classfile must indeed be tagged as a confinement domain.

3. A confinement domain must be a public interface that declares no field or method.

4. The direct superinterfaces of a confinement domain must also be confinement domains.

5. A confinement domain has no superinterface iff it is the root domain.

6. If a classfile contains a non-emptyDOC attribute, then except for the direct superinterface identified in the
DOC attribute, none of the direct superinterfaces shall be a confinement domain.

4.1.2 Annotation Tool.

A simple Linux command-line tool has been developed to take the role of the backend component in Fig. 3, providing
a convenient means for manual annotation of classfiles.

4.2 Link-Time Type Checking

4.2.1 Pluggable Verification Modules.

A type checking procedure that enforces the constraints specified in Sect. 3.3 must be incorporated into the dynamic
linking process of the JVM in order to enforce the DOC type system at the bytecode level. The Aegis VM [8] is
an open source JVM that offers an extensible protection mechanism called Pluggable Verification Modules (PVMs)

4This design has two benefits: Firstly, the standard bytecodeverification procedure will make sure that the declared confinement domain of a
class is indeed an interface. Secondly, the standard dynamiclinking semantics guarantees that the confinement domain interface is accessible from
within the class when it is prepared. This property is crucial in guaranteeing proof obligations can be discharged properly (see Sect. 4.2.2).
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Type System TCB Size Increase (LOC) % wrt DOC

DOC 788 100%
JAC 2647 336%

Confined Types 2926 371%

Figure 5: TCB size increase resulting from bytecode-level implementation of various type systems.

[10, 11]. Unlike other implementations of the JVM, in which the link-time bytecode verification service is a fixture
that cannot be extended conveniently, the PVM framework is based on a modular verification architecture whereby
bytecode verification is a pluggable service that can be readily replaced, reconfigured and augmented. Third-party
verification services can be safely incorporated into the dynamic linking process as a PVM. The verification service
exported by a PVM will be invoked prior to the preparation of aclassfile [22, Sect. 5.4.2]. The PVM may also schedule
programmer-defined checks, calledproof obligations, to occur at various points of the dynamic linking process. The
PVM framework also provides reusable facilities for easingthe construction of link-time static program analyzers.

4.2.2 Proof Obligations.

A DOC PVM was implemented to enforce the type constraints specified in Sect. 3.3. When the verification service
exported by the DOC PVM is applied to an incoming classfile forJava reference typeA, it performs the following
tasks:

1. It parses anyDOC attribute that may be attached to the class, and verifies thatthe attribute is well-formed.

2. It scans through the class interface and also the body of each bytecode method once in order to formulate
proof obligations corresponding to type constraintsC0–C8. Specifically, two types of proof obligations are
formulated:

(a) A proof obligation that encapsulates type constraintsC0–C1 is scheduled to be discharged when a class is
prepared [22, Sect. 5.4.2].

(b) For each exception handler, a proof obligation encapsulating type constraintC2 is scheduled to be dis-
charged when a class is prepared.

(c) For each of the constraintsC3–C8, a proof obligation is scheduled to be discharged when the correspond-
ing constant pool reference is resolved [22, Sect. 5.4.3]. For example, in the case ofC7, if the bytecode
instruction “getstatic〈B.f :C〉” is found to be in the body of a bytecode method, then the proofobligation
(C . A ∨ A ./ B) will be scheduled for discharging at the point when the constant pool field reference
〈B.f :C〉 is resolved inA.

It is easy to see that this scanning process takes time proportional to the size of the classfile. Notice also the discharging
of proof obligations incur a performance overhead comparable to those of the checks enforcing standard Java access
control (e.g.,public, protected, etc).

4.2.3 Trusted Computing Base.

The resulting implementation is extremely compact, consisting of only 788 lines of moderately commented C code.
The simplicity of DOC’s design results in a type checking procedure that does not involve an iterative static analysis
component. Consequently, the increase in the size oftrusted computing base (TCB)is quite acceptable. This compares
favorably with the increase of TCB size resulting from previously published [10, 9] bytecode-level implementation of
JAC [21] and confined types [29, 17, 30] (See Fig. 5).
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5 Type Inference

Suppose one is given a legacy Java application (e.g., ajar file) that does not come with DOC annotations. Is there
a way to automate the annotation of the legacy code base? Moreinterestingly, is it possible to design a development
environment in which the programmer obtains automaticallygenerated advice on how her code should be annotated?
Such are the possible applications of the DOC type inferenceproblem. In general, there are multiple ways to organize
the confinement domain hierarchy for a given code base. One desires a hierarchy that satisfies certain security-related
criteria. This section reports preliminary exploration ofDOC type inference with respect to a specific criterion. It
turns out that, although DOC type checking is highly efficient, the formulation of DOC type inference as explored
here is computationally intractable (Sect. 5.1). Preliminary experiences in employing heuristic approaches to solve
the problem are discussed (Sect. 5.2).

5.1 A Formulation of the Type Inference Problem

The goal of DOC type inference is to infer from a legacy code base a set of confinement domains and to identify their
member classes. Notice that there is always a degenerate solution: all reference types are assigned to the root domain.
Intuitively, a finer-grained allocation of classes to confinement domains is more desirable. Therefore, the number of
inferred confinement domains should bemaximized. The inference process consists of two stages:

1. Scan through the code base to obtain a set of type constraints mandated byC1–C8. The constraints have the
form of either(B . A) or (C . A ∨ A ./ B).

2. Find a solution to the constraints that maximizes the number of equivalence classes induced by the binary
relation./. Recall that the binary relation. over reference types is reflexive and transitive but not antisymmetric.
The binary relation./ therefore defines an equivalence relation over reference types. The equivalence classes
induced by./ correspond to the confinement domains we seek to infer.

The first stage is easy to deal with. The second stage, however, involves solving a combinatorial optimization problem.
Specifically, each reference type can be represented as a node in a digraph, and the relationshipB.A as an arc from

nodeB to nodeA. Under this representation, constraint solving becomes equivalent to the construction of a digraph
out of the arcs prescribed in the constraints. Along the samevein, an equivalence class induced by./ corresponds to a
strongly connected component (SCC) in the digraph. Given a set of constraints, the optimization objective is therefore
to maximize the number of SCCs in the constructed digraph.

A unary constraint of the formB . A mandates that the arc(B,A) must go into the constructed digraph. So
constraint solving may very well begin with an initial graphconstructed out of the unary constraints. A disjunctive
constraint of the form(C . A ∨ A ./ B) requires more care. In particular,(C . A ∨ A ./ B) can be rewritten as
(C . A ∨ A . B) ∧ (C . A ∨ B . A). Generalizing, let us assume that the disjunctive constraints are given as a list of
primitive disjunctive constraints of the form(A1 . B1 ∨ A2 . B2). That is, a primitive disjunctive constraint requires
that we place into the resulting digraph at least one arc fromthe pair〈(A1, B1), (A2, B2)〉.

Seen in this light, stage two of type inference is equivalentto solving the following optimization problem:

MAX -SCCProblem (Optimization Version): Given a digraphG and a listL of pairs of arcs, at least one arc from
each pair inL is to be selected and added toG. Which combination of arc selection will result in a graph with
the maximum number of strongly connected components?

A decision version of the optimization problem can be formulated in the standard way. It turns out that the decision
problem is NP-complete. The proof of this result can be foundin Appendix A

Theorem 1 MAX -SCC(decision version) is NP-complete.

It is therefore unlikely that there is a good algorithm for the present formulation of the type inference problem. We
thus set out to look for a good heuristic solutions.
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5.2 Preliminary Experience

Since MAX -SCC is NP-complete, we do not expect good algorithms to exist for the constraint problem. We do, how-
ever, have some preliminary experience in employing a branch-and-bound algorithms to solve MAX -SCC instances.
Based on the Byte Code Engineering Library5 (BCEL), a DOC type inference tool has been developed. Given one
or morejar packages, the tool construct a corresponding instance of MAX -SCC, and apply a branch-and-bound
algorithm to search for an optimal subsumption hierarchy for the input packages. Some non-trivial graph-theoretic
optimizations have allowed us to prune the search space significantly. A number of heuristic search strategies were
developed to further improve performance. A combination ofoptimizations and heuristics6 allowed us to fully infer
the optimal subsumption hierarchies of medium-sized software packages such as JRuby7 (468 classfiles, 832KB) and
Jython8 (336 classfiles, 720KB). Our implementation, however, failed to complete the inference task in a reasonable
amount of time when presented with Kawa9 (746 classfiles, 1.4MB). Although further experimentationwould have
allowed us to come up with increasingly competitive heuristics, two observations disturbed us:

1. The optimal subsumption hierarchies contain too many confinement domains to be comprehensible for human
programmers.For example, the optimal subsumption hierarchy for JRuby contains 317 confinement domains
(out of 468 classfiles), while the optimal subsumption hierarchy for Kawa features 469 confinement domains
(out of 746 classfiles). Admittedly, there are exceptions inwhich the numbers are slightly more reasonable,
(e.g., 189 confinement domains out of 336 classfiles for Jython), but they are exceptions rather than the norm.

2. Better heuristics probably would not improve the tractability of constraint solving much.One thing we tried was
to use the same heuristic strategy to solve a constraint problem twice, and used the optimal solution obtained in
the first round as an initial solution for the branch-and-bound algorithm in the second round. We would have
expected that, given the aggressive initial bound, the second round of constraint solving would be significantly
more efficient than the first round. To our surprise, no significant performance differential was observed. This
means that the branch-and-bound algorithm was not able to perform much pruning until it got very deep into the
search tree.

Both of the observations suggest that the current formulation of DOC type inference is under-constrained, resulting in
the proliferation of confinement domains and the ineffectiveness of heuristic search strategies.

We still believe that maximization of the number of confinement domains is a security-wise sound criterion. What
is missing from the formula is probably additional criteriasuch as natural-ness and comprehensibility. We conjecture
that formalization of these criteria will result in a denserinitial digraphG, which will in turn lead to more efficient
constraint solving and subsumption hierarchies of more manageable complexities. Validation of these conjectures
clearly belongs to future work.

6 Concluding Remarks

6.1 Discussion

DOC was originally discovered during the study of a more sophisticated capability type system [14], in which the
data flow trajectory of an object reference can be constrained via a capability type with a structure resembling the
sequential fragment of CSP [18]. DOC was superimposed on this capability type system to counter a class of capability
spoofing attacks. It was later recognized that capability amplification and capability leaking are two general issues that
capability type systems similar to [14] must wrestle with. The successful experience of constructing the capability type
system in [14] on top of DOC leads us to believe that DOC could serve as a basic building block for more sophisticated
capability type systems, providing the infrastructure forcapability confinement.

5http://jakarta.apache.org/bcel.
6Details to be given in an up-coming technical report.
7http://jruby.sourceforge.net.
8http://www.jython.org.
9http://www.gnu.org/software/kawa.
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6.2 Related Work

Confined Types. DOC can be considered a discretionary variant of confined types [29, 17, 30]. The first point of
comparison is that, while the confinement boundaries of confined types are absolute and uniform, those in DOC are
semi-permeable and discriminatory, allowing capability granting through discretion and reference acquisition through
subsumption. A unique feature of our type system is that references may escape from a confinement domain so long
as it assumes a certain non-bypassable abstract interface.While Vitek et al identify confinement domains with Java
packages, thereby reusing the access control semantics of package private members, the subsumption hierarchy of
DOC is independent of the Java package semantics. Also, the type rules for confined types block reference leakages at
their originating sites, while the type rules of DOC target illegal reference acquisition at the receiving ends. This shift
of focus is motivated by the need of discriminatory confinement induced by the trust relation. Lastly, bytecode-level
implementation of confined types involves an iterative flow analysis element [9]; link-time type checking of DOC does
not.

Ownership Types. Ownership types [23, 5, 4, 2, 1] is a family of typing disciplines for preventing leaking of
references to the internal representation of an aggregate object. It works at a granularity that is finer than confined
types: whereas confined types prevent reference leaking at the package level, ownership types prevent leaking of
component references outside of an aggregate object. A particular relevant formulation of ownership types is the
recent proposal of ownership domains [1]. Our work shares with [1] the approach of using multiple encapsulation
boundaries (aka domains) to specify non-uniform aliasing policies. [1] also allows fine-grained inter-domain alising
constraints to be specified through thelink directive. A similar role is filled in this work by the subsumption hierarchy.
While our trust relation as induced by the subsumption hierarchy is much less flexible than the user-specified link
relation in [1], it nevertheless represents a natural solution for a wide varieties of modeling problems.

Composable Encapsulation Policies. This work shares with Composable Encapsulation Policies (CEP) [26, 25]
the concern of providing alternative interfaces for multiple client categories. The role of encapsulation policies is
analogous to capabilities in DOC. Schärli et al [26] offer an insightful comparison between CEP and Java interfaces.
Most of the analysis also applies to DOC, except for one. They[26] rightly observe that abstract interfaces could
have been used for moduling encapsulation policies had it not been the fact that encapsulation policies modeled as
such are not enforceable. Under DOC, encapsulation policies expressed in Java interfacescan indeed be enforced as
capabilities. DOC can therefore be seen as the least intrusive augmentation to Java that turns interfaces into enforceable
encapsulation policies. CEP, however, offers a more flexible language for specifying encapsulation policies than
Java interfaces: provision of fine-grained access rights (i.e., called, overridden, reimplemented) and composition
of encapsulation policies, etc. Whereas CEP offers per-client class customization of encapsulation policies, DOC
customizes the capability of an object reference using confinement domains and subsumption relations. Whereas the
implementation of CEP involves dynamic checks, DOC is a statically enforceable type system.

Pluggable Verification Modules. The PVM framework [10] of the Aegis VM [8] is based on a modularverifi-
cation architecture called Proof Linking [11]. The correctness of Proof Linking, especially its interaction with lazy
dynamic linking, has been studied rigorously [12]. The correctness proof has been generalized to account for multiple
classloaders [13]. Both JAC [21] and confined types have beenimplemented under the PVM framework [10, 9]. As
reported in Sect. 4.2, the simplicity of DOC results in an increase in size of TCB that is more competitive than a
typical implementation of an alias control type system.

6.3 Future Work

We plan to extend this work along three directions. Firstly,we plan to establish the soundness of DOC in Feather-
weight Java [20]. Secondly, we plan to evaluate the utility of DOC in a medium-sized software development project
involving the construction of extensible systems. Throughthis exercise, we plan to document any coding idioms and
design patterns pertaining to the use of DOC. Thirdly, we plan to explore more constrained formulations of DOC type
inference, and also the design of heuristics and/or approximation algorithms for these formulations. The goal is to
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construct program development environments that can offeradvice to developers regarding how DOC confinement
domains should be organized.

6.4 Conclusion

A lightweight, statically enforceable type system, Discretionary Object Confinement, was proposed. Its utility in
facilitating a useful form of secure cooperation was explored in the context of extensible systems. Formulated at the
bytecode level, the type system is enforceable at link time by the code consumer. Type checking is highly efficient,
involving only a linear-time scan of classfiles. A link-timetype checker has been implemented, yielding only a modest
increase to the size of the TCB. The problem of inferring typeannotations from legacy code base was shown to be
NP-complete. Preliminary experiences in the design and implementation of type inference algorithms were discussed.

A Proof of Theorem 1

The type inference problem of DOC can be viewed in abstract asthe following optimization problem:

MAX -SCCProblem (Optimization Version): Given a digraphG and a listL of pairs of arcs, at least one arc from
each pair inL is to be selected and added toG. Which combination of arc selection will result in a graph with
the maximum number of strongly connected components?

The decision version of this problem can be formulated as follows.

MAX -SCCProblem (Decision Version): Given a digraphG, a listL of pairs of arcs, and a positive integerK, a set
S of arcs is to be selected fromL, such that for each pair of arcs inL, at least one arc belongs toS. Does the
digraphG∗ obtained by addingS to G has at leastK strongly connected components?

This appendix provides a formal proof that MAX -SCC is NP-complete. The result is obtained by a reduction from the
following intermediate problem.

Acyclicity Maintenance (AM ) Problem: Let G(V,A) be an acyclic digraph andL be a list of pairs of arcs. For each
arc(u, v) ∈ L, u, v ∈ V but (u, v) 6∈ A. Suppose a setS of arcs is to be selected fromL, such that for each pair
of arcs inL, at least one arc belongs toS. CanS be selected in a way that the digraphG∗ obtained by addingS
to G contains no directed cycle?

A special case of MAX -SCC, the problem AM can be shown to be NP-complete by a reduction from the following
problem:

1-IN-3 3SAT Problem: Given a Boolean formulaφ in conjunctive normal form such that each clause contains three
positive literal, is there a satisfying truth assignment for φ such that each clause inφ has exactly one true literal?

1-IN-3 3SAT can be shown to be NP-complete by a reduction from 3SAT [16].

Theorem 2 AM is NP-complete.

PROOF. We first show that the AM problem belongs to NP. Suppose we aregiven an acyclic digraphG and a list
L of pairs of arcs. A nondeterministic algorithm needs only guess a setS of arcs. For each arc inS, checking whether
it is in L. For each pair of arcs inL, checking whether at least one arc from the pair belongs toS. Then, checking
whether the digraph obtained by addingS to G does not have any directed cycle. It is easy to see that these checks
can be accomplished in polynomial time. Thus, AM belongs to NP.

We then show that the AM problem is NP-hard by proving a reduction of 1-IN-3 3SAT to AM. Let φ = C1 ∧
C2 ∧ · · · ∧ Cm be an instance of 1-IN-3 3SAT problem, i.e., a Boolean formula in conjunctive normal formin which
each clause contains three positive literals. LetCi = xi1 ∨ xi2 ∨ xi3, for 1 ≤ i ≤ m.

We now construct an acyclic digraphG = (V,A) and a listL of pairs of arcs. LetV = {v1, v2, . . . , v6m}.
Construct the arc setA as follows:

A = {(v6i−4, v6i−3), (v6i−2, v6i−1), (v6i, v6i−5) : 1 ≤ i ≤ m}.
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The intention is that the subgraph induced byVi = {v6i−5, v6i−4, . . . , v6i} represents the clauseCi, for 1 ≤ i ≤ m.
We next construct a listL of pairs of arcs. For1 ≤ i ≤ m and1 ≤ j ≤ 3, let the arcaij = (v6(i−1)+2j−1, v6(i−1)+2j)

correspond to the literalxij . Also, let āij = (v6(i−1)+2j , v6(i−1)+2j−1). The listL will be constructed in terms ofaij

andāij . We first create3m pairs of arcs forL as follows: For each clauseCi = xi1 ∨ xi2 ∨ xi3, 1 ≤ i ≤ m, we create
a setAi of 3 pairs of arcs:

Ai = {{ai1, ai2}, {ai2, ai3}, {ai3, ai1}}.

Then, for each variable that appears more than once inφ, e.g.,k times, we create a set of2k pairs of arcs forL.
Let y be such a variable that appearsk times such thaty = xi1j1 = xi2j2 = · · · = xikjk

, where the subscripts
i1j1, i2j2, . . . , ikjk form a lexicographic order. We create a setBy of 2k pairs of arcs

By = {{ai1j1 , āi1j1}, {āi1j1 , ai2j2}, {ai2j2 , āi2j2}, {āi2j2 , ai3j3}, . . . ,

{aikjk
, āikjk

}, {āikjk
, ai1j1}}.

We now finish the construction ofL, which is the union ofAi (1 ≤ i ≤ m) andBy for each variabley appears more
than once inφ. In order to show the relations between the elements inL, we introduce an undirected graphG(L),
called the graph ofL, such that each arc inL corresponds to a vertex inG(L), and each element (i.e., pair of arcs) in
L corresponds to an edge inG(L). Fig. 6 illustrates the construction ofG andL. It is easy to see that we can construct
the aboveG andL in polynomial time.

We claim that there exists a satisfying truth assignment forφ such that each clause inφ has exactly one true literal
if and only if there exists a setS of arcs satisfying the following three conditions: (1) Eacharc inS is contained inL;
(2) for each pair of arcs inL, at least one arc belongs toS; and (3) the digraphG∗ obtained by addingS to G does
not have directed cycles. We first suppose that there exists asatisfying truth assignment forφ such that each clause in
φ has exactly one true literal. For each clauseCi, 1 ≤ i ≤ m, containing exactly two false literals, say,xij andxij′ ,
j 6= j′, we put the corresponding two arcsaij andaij′ into S (see Fig. 7). Sinceaij andaij′ are contained inAi,
condition (1) holds. Notice that each pair of arcs inAi containsaij or aij′ . For each variabley appearingk ≥ 2 times
in φ and its corresponding setBy, if y is false, thenS containsk arcsai1j1 , ai2j2 , . . . , aikjk

. Thus, each pair of arcs
in By contains at least one arc inS. If y is true, then we putk arcsāi1j1 , āi2j2 , . . . , āikjk

into S. Hence each pair of
arcs inBy contains at least one arc in the updatedS. After we consider all clausesCi and variablesy, we obtain a set
S of arcs which satisfies conditions (1) and (2). We now consider the digraphG∗ obtained by addingS to G. We can
partitionV (G∗) into m subsetsVi = {v6i−5, v6i−4, . . . , v6i}, 1 ≤ i ≤ m such thatVi corresponds to the clauseCi. It
is easy to see that no arcs inG∗ connecting two vertices inVi andVj (j 6= i) respectively. The digraph induced byVi

is denoted by〈Vi〉. For any〈Vi〉, it is easy to check this digraph has no directed cycle. For example, letxi1 be the true
literal in Ci. If variablexi1 appears only once inφ, then〈Vi〉 has the arc set

{(v6i−4, v6i−3), (v6i−3, v6i−2), (v6i−2, v6i−1), (v6i−1, v6i), (v6i, v6i−5)}.

If variablexi1 appears more than once inφ, then〈Vi〉 has the arc set

{(v6i−4, v6i−3), (v6i−3, v6i−2), (v6i−2, v6i−1), (v6i−1, v6i), (v6i, v6i−5), (v6i−4, v6i−5)}.

Thus, the digraphG∗ has no directed cycle. Hence, condition (3) holds.
Conversely, suppose that there exists a setS of arcs satisfying the above three conditions. IfS contains three

different arcs inAi, thenG∗ has a directed cycle

{(v6i−5, v6i−4), (v6i−4, v6i−3), (v6i−3, v6i−2), (v6i−2, v6i−1), (v6i−1, v6i), (v6i, v6i−5)}.

This contradicts condition (3). IfS contains only one arcs inAi, then there exist a pair of arcs inAi ⊆ L in which both
arcs are not inS. This contradicts condition (2). Thus,S contains exactly two different arcs inAi, 1 ≤ i ≤ m. We can
set FALSE to the two literals corresponding to these two arcs, and set TRUE to the remaining literal inCi. We now show
that any variabley that appearsk ≥ 2 times inφ has the same truth assignment. Lety = xi1j1 = xi2j2 = · · · = xikjk

,
where the subscriptsi1j1, i2j2, . . . , ikjk form a lexicographic order. Assume that not all these literals have the same
truth assignment. There must exist two literalsxipjp

andxip+1jp+1
such thatxipjp

=FALSE andxip+1jp+1
=TRUE,

wherep + 1 =mod(k). Thus,aipjp
∈ S andaip+1jp+1

6∈ S. Since(āipjp
, aip+1jp+1

) is a pair of arcs inBy ⊂ L,
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it follows from condition (2) that̄aipjp
∈ S. Sinceaipjp

and āipjp
form a directed cycle, this contradicts condition

(3). Hence, any variable that appears more than once inφ has the same truth assignment. Therefore, there exists a
satisfying truth assignment forφ such that each clause inφ has exactly one true literal.

Theorem 3 MAX -SCCis NP-complete.

PROOF. We first show that the MAX -SCC problem belongs to NP. Suppose we are given a digraphG, a list of
pairs of arcsL, and an positive integerK. A nondeterministic algorithm needs only guess a setS of arcs. For each arc
in S, checking whether it is inL. For each pair of arcs inL, checking whether at least one arc from the pair belongs
to S. Since computing the strongly connected components of a digraph can be performed in linear time [28], It is easy
to see that SCC belongs to NP.

We now show that the MAX -SCC problem is NP-hard by establishing a reduction of AM to MAX -SCC. Given
an instance of the AM problem, that is, an acyclic digraphG and a listL of pairs of arcs, we construct an instance
of MAX -SCC by settingḠ = G, L̄ = L andK = |V |. This construction needs linear time. LetS be a set of arcs
selected fromL such that for each pair of arcs inL, at least one arc belongs toS. Let G∗ be the digraph obtained by
addingS to G. We can set̄S = S andḠ∗ = G∗ for Ḡ andL̄. It is easy to see thatG∗ is acyclic if and only ifḠ∗ has
at leastK strongly connected components.
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