Discretionary Object Confinement: A Minimalist
Approach to Capabilities for the JVM

Philip W. L. Fong Boting Yang

Technical Report CS-2004-13
December 23, 2004

Department of Computer Science
University of Regina
Regina, Saskatchewan, S4S 0A2
Canada

© Philip W. L. Fong & Boting Yang

ISBN 0-7731-0506-9
ISSN 0828-3494

Discretionary Object Confinement: A Minimalist Approach to
Capabilities for the JVM

Philip W. L. Fong Boting Yang
Department of Computer Science
University of Regina
Regina, Saskatchewan, Canada S4S 0A2
{pW f ong, boti ng}@s. uregi na. ca

First Draft: December 23, 2004

First Revision: January 24, 2005
Second Revision: February 11, 2005

Abstract

Secure cooperation is the problem of protecting mutually suspicious cotdeftom one another. The notion of
capabilities is an effective means for facilitating secure cooperation iardigally extensible software systems, in
which both trusted and untrusted code may run alongside each otherpdfas proposes a lightweight, statically
enforceable type system, Discretionary Object Confinement (D@Emddeling capabilities with abstract interface
types. The type system can be seen as a discretionary variant ofezbhfges. Formulated at the bytecode level,
the type system is enforceable at link time, by the code consumer. Tyg&in does not involve any iterative flow
analysis, and is therefore highly efficient. A link-time type checker has maplemented for the Java platform under
the framework of Pluggable Verification Modules. The simplicity of the tyysesm imposes only a modest increase
in size to the trusted computing base. Although DOC enjoys an efficient tygeking procedure, the inference of
DOC annotations from legacy code base is NP-complete. The practidalatigm of this negative result is discussed.

1 Introduction

Secure cooperation [27, 24] is the problem of protectingually suspicious code units within the same execution
environment from one another. Peer code units collabosaghéring object references. The challenge is to allow the
owner of an object reference to impose access constraiaetstose object references that are shared with an untrusted
peer. Secure cooperation is thus an enabling infrastriéduidynamically extensible software systems such as mobil
code language environments, scriptable applicationssaftdare systems with plug-in architectures, in which both
trusted and untrusted code units may run alongside each othe

The notion of capabilities [7, 6] provides an effective me&or supporting secure cooperation. A capability is
traditionally understood as an object reference plus afstaess rights that can be exercised through the reference.
One way of implementing capabilities in an object-orierpealgramming environment is to employ a combination of
the proxy design pattern [15] and load-time binary rewgt[9]. Such a solution approach results in proliferation
of small objects, non-trivial performance overhead, anafiesion of object identity. A more elegant approach is to
embed the notion of capabilities into a statically checkdippe system. In aapability type systerf8], every object
reference is statically assigned a capability type, whiglsgribes what operations can be performed through thetobje
reference. A capability type may impose on the object referea set of operational restrictions that constrains the
way the underlying object may be accessed.

In this paper, we explore the following questidithat is the least perturbation to the Java programming laatgu
that allows us to build a rudimentary but useful capabilitpé system? naive approach would be to exploit abstract
interface types (e.g., abstract classes and interfaces/a) as capability types. An abstract interface exposgsanl

limited subset of the functionalities provided by the umglag object, and thus an object reference with an abstract
interface type can be considered a capability of the unthgrlgbject. A code unit wishing to share an object with its
peer may grant the latter a reference properly typed withpalaitity interface. The receiver of the reference may then
access the underlying object through the constrainedfauier This naive scheme, however, has two problems:

1. Capability Amplification. The possibility of unrestricted downcasting allows a mialis receiver to amplify
access rights. All the functionalities of the underlyingemih can be fully exposed if its concrete class identity
is known to the a malicious peer.

2. Capability Leaking. A peer may freely acquire capability instances (e.g., thhomstantiation). This is prob-
lematic when capabilities are supposed to be owned and radiygan abstraction, through which clients obtain
legitimate capability instances.

A careful examination of the research problem reveals iepdetie with the recent line of work on rethinking
the notion of encapsulation in object-oriented prograngranguages [23, 5, 29, 17, 4, 2, 1, 26, 25]. Influenced
by the work of Viteket al [29, 17, 30], this paper proposes a lightweight, staticaltjorceable type system called
Discretionary Object Confinement (DOC) that fully suppdhs use of abstract interface types as capability types.
The type system can be seen as a discretionary variant ohednfypes [29, 17, 30], in which the boundaries of
confinement domains are semi-permeable. Specifically,taeesof Java reference types is stratified into a hierarchy
of confinement domains, partially ordered by a binary trekttion. Java reference types declared inside a confinement
domain are seen from the outside as capability types. Soderagcapability remains inside its defining confinement
domain, it has the same semantics as a regular Java referdpeeever, once a capability escapes to an untrusted
domain, its concrete class identity will be concealed. Ftioem on, it can only be accessed through a non-bypassable
abstract interface, thereby avoiding capability amplifa@a To control capability propagation, an untrusted dionis
not allowed to acquire a capability unless it is explicithagted one by argument passing. Capability transfer is thus
moderated through a combination of mandatory and diseratiocontrol. The DOC type system supports a useful
form of secure cooperation in the presence of dynamicaligldal software extensions. In a related work [14], it is
also shown that DOC can be used as the foundation for buildiomg sophisticated capability type systems in the Java
platform.

The contributions of this paper are the following:

1. A lightweight, statically enforceable type system, DO¥&s proposed to support the use of abstract interface
types to model capabilities. We demonstrate the utilityhef DOC type system in facilitating a form of secure
cooperation in the context of dynamically extensible safevsystems.

2. The DOC type system is formulated at the bytecode level,isthus enforceable at link time by the code
consumer. This feature is crucial in the context of dynafhyiextensible software systems, in which untrusted
extensions may be produced by a malicious compiler.

3. The DOC type system is designed to be extremely lightwiegghthat type checking involves only a linear-time
scan of the target classfile: no iterative flow analysis isived. This lightweight design is desirable because it
incurs only a modest increase to the size of the trusted ctingpbase.

4. The link-time type checking procedure has been impleatkintan open source JVM, the Aegis VM [8], which
provides an extensible protection mechanism, Pluggahbiédation Modules [10], for the safe introduction of
third-party verification services into the dynamic linkipgpcess of Java.

5. The problem of inferring DOC annotations from legacy cbde been characterized to be NP-complete. Prelim-
inary experience in employing heuristic approaches toestiie DOC type inference problem suggests that the
current formulation of the problem may be under-constiin&e believe that a more constrained formulation
is in order.

The rest of this paper is organized as follows. Sect. 2 givesvarview of DOC, and demonstrates its utility.
Sect. 3 presents a bytecode-level formulation of DOC. Sergports an implementation of a link-time type checker
for DOC. Sect. 5 explores the problem of inferring DOC antiotes from legacy code. The paper concludes with
discussions, related work, future work, and a summary.

public abstract class Character { /* Common character behavior */ }

public interface Cbservable {

Cont ext get Context(); /1 e.g., forest, river, bad I and
Mode get Mode(); /1 e.g., conbating, regenerating, scouting
Activity getActivity(); I/l e.g., defend, attack, nove towards
Character getTarget(); /1 e.g., target of activity

}

public abstract class Hero extends Character inplenents Cbservable {
protected Sidekick observers[];
public final void attach(Sidekick sidekick) { /* Attach sidekick */ }
public final void detach(Sidekick sidekick) { /* Detach sidekick */ }
public final void broadcast() {

for (int i = 0; i < observers.length; i++)
if (observers[i] != null)
observers. updat e(this);
}
}

public abstract class Sidekick extends Character {
public abstract void update(Qbservabl e hero);

}

public class GaneEngi ne {
/1 Manage life cycle of characters

}

Figure 1: Regular set up of hero-sidekick game.

2 Discretionary Object Confinement

2.1 A Motivating Example: Observer Pattern
2.1.1 Setting the Stage.

Suppose we are developing a role-playing game. Over timer@(e.g., Bat Man) may acquire an arbitrary number
of sidekicks(e.g., Robin). A sidekick is an Al-controlled character whdehavior is a function of the state and
behavior of the hero to which it is associated. For examplemthe health of the hero is low, or when the hero is
attacked by a villain of incomparably higher hit points,ritedefensivesidekick may attempt to block the movement
of the villain and take the hit points for the hero. Altermaty, when the hero is attempting a long-range offense, then
a scoutsidekick may automatically move towards the target to impraisibility. A group of scout sidekicks may
also establish a defense perimeter when the hero is redimgerdlong the same vein, when the hero is attacking,
an offensivesidekick may augment the fire power of the hero The maximumber of sidekicks that may be
attached to a hero is a function of its type and experienceer& may also choose to adopt or orphan a sidekick at
any point of time. New sidekick and/or hero types may be ohiiceed in future releases of the game.

A standard set up of the game is to employ the Observer p4itg}ito capture the dynamic dependencies between
heros and sidekicks, as is shown in Fig. 1, where sidekickslaservers of heros. Ti@&nmeEngi ne class is respon-
sible for creating instances bkr o andSi deki ck, and managing the attachment and detachme8t deki cks.

2.1.2 Complications.

The set up in Fig. 1 would have worked beautifully had it natrioéhe following complicationa requirement of the
game is such that users may dynamically download new hermlekisk types from the internet during a game play

The introduction of dynamic software extensions signififanomplicates the security posture of the application.
Specifically, the developer must now actively ensure faingalay by eliminating the possibility of cheating through
the downloading of malicious characters.

Capability Amplification: Upon receiving aHer o object through thebbser vabl e argument of theupdat e
method, a maliciouSi deki ck may then downcast thébser vabl e reference to &ler o reference, thereby
exposing thesidekick management interfacktheHer o object. This allows the maliciousi deki ck to attach
powerful sidekicks to théler o object, thereby turning thider o object into a more potent character.

Capability Leaking: A maliciousHer o can augment its own power by simply creating new instanceoonérete
Si deki ck subclasses and attaching these instances to itself.

A number of lessons may be learned from the above archetyghieats.

Capabilities. Notice that aHer o exports two interfaces: (i) a sidekick management interfae.,Her o), and (ii) a
state query interface (i.eJoser vabl e). While the former is intended to be used by tBeTeEngi ne, the latter is

a limited interface through whic8i deki cks interact withHer os. In short, arCbser vabl e reference to &er o
object is supposed to becapability. i.e., a statically typed reference with a concealed cldsstity. Unfortunately,
standard Java provides no provision for protecting cajiasil Access rights can be readily amplified by downcasting
as we have seen in the first cheat.

Confinement. To the Her os, Si deki cks are also capabilities: thei deki ck interface exposes thepdat e
method, the invocation of which augments the behavior éfeao. The second cheat exploits the weakness of
standard Java semantics, wheréfgr os may freely acquiréi deki ck capabilities through object instantiation.
What is needed is a notion obnfinement domajiso that leaking of capabilities can be controlled.

Trust. Itisintended thabHer o andSi deki ck belong to two distinct confinement domains. Amplification seak-

ing of capabilities should therefore be restricted. In casttGaneEngi ne is by design responsible for managing the
life cycle of Her os andSi deki cks, and as such it requires full access to everything belgnmithe two confine-
ment domains. That is, restrictions on amplification anditegof capabilities should not apply @aneEngi ne.
This highlights the need to have a discriminating confinengdemain boundary, so that full access may be given to
trusted confinement domains.

Capability Granting by Discretion. There are times in which capability granting should be adldweven between
mutually distrusting confinement domains. For examplepsapCbser vabl e belongs to the same confinement
domain asHer o. ThenCbser vabl e is a capability type from the perspective 8f deki ck, and crossing of
confinement boundary is not supposed to be allowed. Brotidgad change would then be impossible. Therefore, a
discretionary means for capability granting via argumexstsing should be allowed.

2.2 Enter Discretionary Object Confinement
2.2.1 Basic Concepts.

Discretionary Object Confinement formalizes the featuuggested in the analysis above. Specifically, DOC is based
on the following concepts:

1. The space of Java reference types is partitioned into ebeuwf confinement domainso that every Java
reference type belongs to exactly one confinement domain.

2. If Java reference typed and B both belong to the same confinement domain, tHemay freelyacquirea
reference of type3. In this casep is said totrust A. Formally, reference acquisition occurs when one of the
following happens:

e An exception handler il with catch typeB catches an exception.

A creates an instance &.

A casts a reference to tyfde

e Ainvokes a method with return type.

An object reference is passed to a method declarethira a formal parameter of typB.
e A reads a field with field typés.

e An object reference is stored into a field Afwith field type B.

3. The confinement domains are organized into a partiallgredisubsumption hierarchylf one confinement
domain subsumes another, then reference types belongihg smbsumed domain trust those belonging to the
subsuming domain. This means that reference #/pey freely acquire a reference of typdf the confinement
domain to whichB belongs is subsumed by that 4f

4. If C does not trus#4, then a reference of typ€ is said to be aapabilityfor A. A Java reference typg may
acquire a capability of typ€' only through the following means:

e Capability granting: A Java reference typB invokes a method declared i, passing an argument via a
formal parameter of typ€'.

e Capability sharing: A Java reference typ® belonging to the same confinement domaindashares a
capability of typeC with A when one of the following happens:

— B invokes a method declared iy, passing an argument via a formal parameter of type
— Ainvokes a method declared i with return typeC.

— Areads afield declared i with field typeC.

— B stores a reference into a field declareddimvith field typeC.

In no other ways shalll acquires a capability.

5. Capabilities provide the only means for untrusted typestess methods declared in the capability type. Specif-
ically, if C'is a capability forA (i.e., C' does not trustd), then A shall not invoke static methods declared in
C.

In summary, the following invariant is maintained:

Capability Confinement. A class must not acquire a capability unless it is explidgitignted one via argument pass-
ing, or it acquires the capability through sharing with ahet class belonging to the same confinement domain.

When a capability is granted, it roams freely within the coerfitent domain. However, escape from a confinement
domain is only possible when the escaping reference doessnape as a capability, or when it escapes as a capability
via argument passing.

2.2.2 Addressing the Security Challenges.

The security challenges of capability amplification anckieg can be fully addressed by DOC. Specifically, the
confinement domains and subsumption hierarchy as showngin2Fcan be defined for the hero-sidekick game
application. BecauseleroDomain and SidekickDomain are incomparable in the subsumption hierarddgr o
and Si deki ck are capabilities of each other. Consequently, not onlySardeki cks not allowed to amplify an
nser vabl e reference to aler o capability (i.e., capability amplification preventedjer os are also forbidden
to create newsi deki ck capabilities (capability leaking prevented). Furtherejdhe subsumption hierarchy also
rendersGameEngineDomainthe most subsuming confinement domain, thereby alloge Engi ne to have full
access to the reference types belonging to the rest of tfmearent domains. Lastly, the provision for capability
granting makes it legitimate to pa€bser vabl e references frontHer o to Si deki ck when an update is broad-
casted.

Notice that we have eschewed giving concrete syntacticdsvbr specifying domain membership and subsump-
tion relationship. A diagram such as Fig. 2 is considereficet for now. More details concerning the embedding
of such information into Java classfiles will be given in Sdct.

CharacterDomain

Char act er

HeroDomain

Observabl e
Her o

‘ GameEngineDomain ‘
‘ GaneEngi ne ‘

SidekickDomain
Si deki ck

Figure 2: Subsumption hierarchy for the hero-sidekick i@ggibn. Arrows represent “subsumed-by” relationships,
meaning that unconstrained reference acquisition mayr@ong the direction of the arrows.

Java Java] Classfile Annotated
Source —_*| Frontend javac Backend - JVM
Source Classfile

A

Internet

DOC Annotations for Classfiles

Figure 3: Processing of DOC Annotations

3 The DOC Type System for Java Bytecode

In the context of the JVM, in which code units bind via dynartiiking, program verification that is performed
against source code, or administrated only by the code pavdoannot be trusted. Therefore, if Discretionary Object
Confinement is to be used for enabling secure cooperatiomjst be enforceable at the bytecode level, by the code
consumer. This section provides a systematic presentaitibe bytecode-level typing discipline for DOC. The seatio
begins with the fixing of assumptions and notations (Sedt). 3The notions of confinement domains, subsumption
hierarchy, trust relation, and capabilities are then ohiiced formally (Sect. 3.2). The bulk of the section outlithes
type constraints for DOC (Sect. 3.3-3.4).

3.1 Assumptions and Notations

To fix thoughts, notice thdhreetype systems are involved in the present discussion: (Iterelard Java type system,
(2) the source-level DOC annotation scheme as describée jrevious section, and (3) the bytecode-level DOC type
system to be presented in this section.

Firstly, there is the standard Java type system. Wedydg andC' to denote a Java reference type, which is a class,
interface, or array type in the standard Java type systenthddse and fields are denoted hyand f respectively. A
constant pool referentés denoted by its referent’s signature delimited by angletkets (-)). For example{B)
denotes a constant pool class reference that resolves ttavhereference typB. Along a similar vein(B.f : C)
denotes a constant pool field reference that resolves todaffideclared inB with field type C, while (B.m : C)
denotes a constant pool method reference that resolves éthedm: declared inB with method return typ€’.

Secondly, there is the source-level DOC annotation schéeeassume that Java source files are properly anno-
tated so that the confinement domain to which a class belenigslicated by some backward-compatible syntactic
devices such gsavadoc taglets/doclets or JSR 175 metadata facility.

Thirdly, there is the bytecode-level DOC type system. Weigom a programming environment (Fig. 3) in
which domain membership and subsumption relationshignimnétion embedded in Java source files is extracted by a
compiler frontend, translated into classfile annotati@msl subsequently injected into the classfiles generateldeby t

1The symbol table of a classfile is called a constant pool [22].

standarg avac compiler. Type checking will be conducted by the JVM at limke, against classfiles, at the bytecode
level. It is the detailed typing discipline of this byteceldeel DOC type system that is presented in this section.
3.2 Confinement Domains, Subsumption, Trust, and Capabilies

Confinement Domains. Every Java reference type belongs to exactly oo@&inement domainNe useD and€ to

denote confinement domains, and writec D when Java reference tygébelongs to confinement domain

Subsumption Hierarchy. A binary subsumption relatiom is defined over the class of confinement domains. The
relation» is a partial ordering, and as such it is reflexive, transitared antisymmetric. We say th&tis subsumed
by £ wheneverD » £. Intuitively, instances of Java reference types belongiri@ may be freely acquired by a class
belonging taf. We also postulate that there isat domainT so thatT » D for all D. All Java platform classes are
members of the root domain. This means they can be freely acquired by classes from afir@nent domairfs

Trust Relation. The subsumption hierarchy induces a natural ordering od Jaference types. Specifically, if
B e D, Ac &andD » £ then we writeB > A, and say thaB trusts A, meaning thatd may freely acquire instances
of B. By definition is reflexive and transitive (but not antisymmetric). We twrée A < B if both A > B and
B A.

Capabilities. An object reference with typ€' is said to be aapabilityfor A if C > A does not hold. Capability
acquisition must take the form of capability granting oralaifity sharing.A and B may share capabilities il < B.

3.3 Type Constraints

To enforce the Capability Confinement Invariant, the follogvconstraints are imposed on classfiles.
C1 If A extends or implementB thenB > A must hold.

Commentary. This rule forces the trust relation to be consistent withd&ea type hierarchy. As a result, Java
type widening never amplifies capability. This design readeerative flow analysis unnecessary at link
time, thereby allowing us to obtain a very small increasehim $ize of trusted computing base in the
implementation of a link-time type checker (Sect. 4.2).

C2 If a bytecode method declared inprovides an exception handler for exception type, thenB > A must hold.
Commentary. Exception handlers may not intercept capabilities.

C3 If a bytecode method declared ihcontains the bytecode instructionéw (B)”, then B > A must hold.
Commentary. Capability instantiation is not permitted.

C4 If a bytecode method declared ihcontains the bytecode instructiooteckcast(B)”, then B > A must hold.
Commentary. Capability amplification is not allowed.

C5 If a bytecode method declared ihcontains the bytecode instructioimokestatic (B.m: C)”, then B > A must
hold.

Commentary. Untrusted types may only access methods declared in a diypslye via a capability instance.

2Notice that the focus of this paper is not to protect Javdqatresources. Instead, our goal is to enforce applicdtiwel security policies that
prescribe interaction protocols among dynamically loaddétiveme extensions. The organization of the subsumptioratiéy therefore reflects
this concern: Java platform classes and application cassek belong respectively to the least and the most subsuoimagjrd

3Thecat ch_t ype field [22, Sect. 4.7.3] of &ode attribute specifies the target exception type of an exceptimdler in the corresponding
bytecode method. If the field assumes a zero value, then thdehdaadh ‘catch-all’ handler. The corresponding exception type is therefore
java. | ang. Thr owabl e, which belongs to the root confinement domain. In this casesubsumption requirement trivially holds.

C6 If a bytecode method declared ihcontains the bytecode instructiomvoke* (B.m: C), whereinvoke* is one
of invokeinterface, invokespecial invokestatic or invokevirtual , then eitheilC > A or A 1 B must hold.

Commentary. Reference acquisition through method return is permittégdibthe the acquired reference is not
a capability, or if the acquisition is achieved through dalitg sharing. Notice that no data flow restriction
is placed on argument passing: capability granting is exabl

C7 If a bytecode method declared i contains the bytecode instructiogét* (B.f : C)", where get* is one of
getfield or getstatic then eithelC' > A or A 1 B must hold.

Commentary. Reference acquisition through field reading is permittetief acquired reference is not a capa-
bility, or if the acquisition is achieved through capalilgharing.

C8 If a bytecode method declared i contains the bytecode instructiopdt* (B.f : C)”, where put* is one of
putfield or putstatic, then eithelC' > B or A > B must hold.

Commentary. Reference acquisition is permitted through field writinghié acquired reference is not a capa-
bility, or if the acquisition is achieved through capabilharing.

Notice from the above list that all means of capability asgign are rejected except for capability granting and
capability sharing. The Capability Confinement Invariarthierefore enforced.

3.4 Handling Array Types

The array type”[] is considered to be a carrier of Java reference ypand as such it is considered to be as capable
asC. Therefore, the following relation is imposed to avoid lieakof C via aC|[] carrier:

C > C]

With this, the type constraints in the previous section wibirk with array types also. Although propagation of ca-
pability carriers is carefully moderated, creation of daifity carriers does not amplify access rights. Consedygent
empty arrays can be freely instantiated using bytecodeuictittnsanewarray or multianewarray without violat-

ing the Capability Confinement Invariant. By a similar tokegtrieval of a capability from a carrier or storage of a
capability into a carrier should be freely allowed once theier is acquired (this is just a form of capability shar-
ing). Therefore, there is no need to impose further type tcaims on bytecode instructioreaload andaastore An
implementation, however, may (out of paranoia) choosedat tinstantiation of capability carriers in the same way
as capability instantiation, thereby obtaining a slightigre stringent set of type rules. The implementation effort
described in this paper assume the more liberal posture.

4 Type Checking Procedure

This section reports the implementation strategy we hav@l@rad to realize the bytecode-level DOC type system in
a JVM. Two subtasks are involved. Firstly, one has to dec@e tonfinement domains, the subsumption hierarchy,
and domain membership are embedded in Java classfiles apdeefed at run time inside a JVM. Secondly, one has
to decide how to incorporate a link-time type checking pdure into the dynamic linking process of the JVM so as

to enforce DOC type constraints. The two topics are cover&krit. 4.1 and 4.2 respectively.

4.1 Type Annotations
4.1.1 Representation.

It is desirable not to introduce additional run-time datature for tracking domain membership and subsumption re-
lationship in the JVM. Confinement domains are thereforerasgnted as subinterfaces of the interface

public interface CharacterDomain inplements org.aegi svm doc. Root { }

public interface HeroDomain inplenents CharacterDonmain { }

public interface Sideki ckDomai n inplenents CharacterDomain { }

public interface GaneEngi neDomai n i npl enents HeroDonai n, SidekickDomain { }

Figure 4: Interface hierarchy representing the subsumptierarchy of the hero-sidekick game application.

or g. aegi svm doc. Root , which in turn represents the root domain Subsumption is therefore naturally in-
duced by subinterfacing, so thétbeing a subinterface @b signifiesD > £. For example, the subsumption hierarchy
depicted in Fig. 2 can be codified in the interface hierar¢tons in Fig. 4. The acyclicity of subinterfacing automat-
ically guarantees that subsumption represented in thissvagtisymmetric.

We use a class attribute [22, Sect. 4.7] with attribute nBXd@to declare the confinement domain of a given class.
Specifically, a classfile may be annotated in three ways:

1. A classfile with ndDOC attribute defines a reference type that belongs to the rontdoT. Such a reference
type is not a confinement domain.

2. An emptyDQOC attribute identifies a reference type to be a confinement @donsaich a reference type belongs
to the root domainr .

3. Anon-emptyDOC attribute defines a reference type that does not correspanddnfinement domain. THOC
attribute holds a valid index into thent er f aces array of the classfile structure. The referenced interface
identifies the confinement domain of the referencetype

To ensure that classfile annotations are well-formed, aitiaddl constraint is introduced:
CO The following must hold:
1. The classfile corresponding to the root domain must baatpidentified as a confinement domain (i.e.,
by an emptyDOC attribute).
. The declared confinement domain of a classfile must inde¢adged as a confinement domain.
. A confinement domain must be a public interface that deslao field or method.
. The direct superinterfaces of a confinement domain msstla confinement domains.
. A confinement domain has no superinterface iff it is the dmonain.

o O~ WDN

. If a classfile contains a non-emXC attribute, then except for the direct superinterface iifiedtin the
DCC attribute, none of the direct superinterfaces shall be fimement domain.
4.1.2 Annotation Tool.

A simple Linux command-line tool has been developed to thkatle of the backend component in Fig. 3, providing
a convenient means for manual annotation of classfiles.

4.2 Link-Time Type Checking
4.2.1 Pluggable Verification Modules.

A type checking procedure that enforces the constraintsifggetin Sect. 3.3 must be incorporated into the dynamic
linking process of the JVM in order to enforce the DOC typetaysat the bytecode level. The Aegis VM [8] is
an open source JVM that offers an extensible protection ard@s called Pluggable Verification Modules (PVMs)

4This design has two benefits: Firstly, the standard bytesedécation procedure will make sure that the declared cenfient domain of a
class is indeed an interface. Secondly, the standard dyrignkiieg semantics guarantees that the confinement domairidnteis accessible from
within the class when it is prepared. This property is ciuciguaranteeing proof obligations can be discharged plhpgeee Sect. 4.2.2).

| Type System | TCB Size Increase (LOC)| % wrt DOC |

DOC 788 100%
JAC 2647 336%
Confined Types 2926 371%

Figure 5: TCB size increase resulting from bytecode-levgllementation of various type systems.

[10, 11]. Unlike other implementations of the JVM, in whidfetlink-time bytecode verification service is a fixture
that cannot be extended conveniently, the PVM frameworlase on a modular verification architecture whereby
bytecode verification is a pluggable service that can beileszplaced, reconfigured and augmented. Third-party
verification services can be safely incorporated into theadyic linking process as a PVM. The verification service
exported by a PVM will be invoked prior to the preparation afassfile [22, Sect. 5.4.2]. The PVM may also schedule
programmer-defined checks, callgof obligations to occur at various points of the dynamic linking procesise T
PVM framework also provides reusable facilities for eadhmgconstruction of link-time static program analyzers.

4.2.2 Proof Obligations.

A DOC PVM was implemented to enforce the type constraintgifipd in Sect. 3.3. When the verification service
exported by the DOC PVM is applied to an incoming classfileJava reference typ4, it performs the following
tasks:

1. It parses anpOC attribute that may be attached to the class, and verifiestbatttribute is well-formed.

2. It scans through the class interface and also the body aif bgtecode method once in order to formulate
proof obligations corresponding to type constrai@&-C8. Specifically, two types of proof obligations are
formulated:

(a) A proof obligation that encapsulates type constrad@sC1 is scheduled to be discharged when a class is
prepared [22, Sect. 5.4.2].

(b) For each exception handler, a proof obligation encapisig type constrain€2 is scheduled to be dis-
charged when a class is prepared.

(c) For each of the constrain®3-C8, a proof obligation is scheduled to be discharged when threspond-
ing constant pool reference is resolved [22, Sect. 5.4.8t.ekkample, in the case @7, if the bytecode
instruction ‘getstatic(B. f : C)" is found to be in the body of a bytecode method, then the pobt§ation
(C> AV A B) will be scheduled for discharging at the point when the camtspool field reference
(B.f:C) isresolved inA.

Itis easy to see that this scanning process takes time propalrto the size of the classfile. Notice also the dischmaygi
of proof obligations incur a performance overhead comparabthose of the checks enforcing standard Java access
control (e.g.publ i c, pr ot ect ed, etc).

4.2.3 Trusted Computing Base.

The resulting implementation is extremely compact, caimgjsof only 788 lines of moderately commented C code.
The simplicity of DOC's design results in a type checkinggadure that does not involve an iterative static analysis
component. Consequently, the increase in the siteisfed computing base (TCB)quite acceptable. This compares
favorably with the increase of TCB size resulting from poasly published [10, 9] bytecode-level implementation of
JAC [21] and confined types [29, 17, 30] (See Fig. 5).

10

5 Type Inference

Suppose one is given a legacy Java application (ejgarafile) that does not come with DOC annotations. Is there
a way to automate the annotation of the legacy code base? iMerestingly, is it possible to design a development
environment in which the programmer obtains automatiagdigerated advice on how her code should be annotated?
Such are the possible applications of the DOC type inferenaielem. In general, there are multiple ways to organize
the confinement domain hierarchy for a given code base. Gsigeda hierarchy that satisfies certain security-related
criteria. This section reports preliminary exploration@®C type inference with respect to a specific criterion. It
turns out that, although DOC type checking is highly effitighe formulation of DOC type inference as explored
here is computationally intractable (Sect. 5.1). Prelamjnexperiences in employing heuristic approaches to solve
the problem are discussed (Sect. 5.2).

5.1 A Formulation of the Type Inference Problem

The goal of DOC type inference is to infer from a legacy codsetmset of confinement domains and to identify their
member classes. Notice that there is always a degenerat®sokll reference types are assigned to the root domain.
Intuitively, a finer-grained allocation of classes to coafirent domains is more desirable. Therefore, the number of
inferred confinement domains shouldeximized The inference process consists of two stages:

1. Scan through the code base to obtain a set of type coristraandated by1-C8. The constraints have the
form of either(B> A) or (C> AV A< B).

2. Find a solution to the constraints that maximizes the remub equivalence classes induced by the binary
relation>a. Recall that the binary relationover reference types is reflexive and transitive but nosgntmetric.
The binary relation< therefore defines an equivalence relation over referemestyThe equivalence classes
induced by correspond to the confinement domains we seek to infer.

The first stage is easy to deal with. The second stage, howewelves solving a combinatorial optimization problem.

Specifically, each reference type can be represented agamadigraph, and the relationshif> A as an arc from
node B to nodeA. Under this representation, constraint solving becomag/algnt to the construction of a digraph
out of the arcs prescribed in the constraints. Along the saime an equivalence class inducedshycorresponds to a
strongly connected component (SCC) in the digraph. Givest afconstraints, the optimization objective is therefore
to maximize the number of SCCs in the constructed digraph.

A unary constraint of the fornB > A mandates that the af@3, A) must go into the constructed digraph. So
constraint solving may very well begin with an initial grapbnstructed out of the unary constraints. A disjunctive
constraint of the form(C > A v A >« B) requires more care. In particuld’ > A vV A > B) can be rewritten as
(CrAVA>B)A(C»>AV Br A). Generalizing, let us assume that the disjunctive comggaire given as a list of
primitive disjunctive constraints of the for(; > B; V As > Bs). That is, a primitive disjunctive constraint requires
that we place into the resulting digraph at least one arc tlenpair((A;, B1), (42, B2)).

Seen in this light, stage two of type inference is equivalersilving the following optimization problem:

MAXx-SCCProblem (Optimization Version): Given a digraphG and a listL of pairs of arcs, at least one arc from
each pair inL is to be selected and addeddo Which combination of arc selection will result in a graphtwit
the maximum number of strongly connected components?

A decision version of the optimization problem can be foratedl in the standard way. It turns out that the decision
problem is NP-complete. The proof of this result can be founéippendix A

Theorem 1 MAx-SCC(decision version) is NP-complete.

It is therefore unlikely that there is a good algorithm foe fresent formulation of the type inference problem. We
thus set out to look for a good heuristic solutions.

11

5.2 Preliminary Experience

Since MAX-SCC is NP-complete, we do not expect good algorithms td éxishe constraint problem. We do, how-
ever, have some preliminary experience in employing a Ir@amd-bound algorithms to solve A% -SCC instances.
Based on the Byte Code Engineering Libfa(BCEL), a DOC type inference tool has been developed. Given o
or morej ar packages, the tool construct a corresponding instance 0f{8CC, and apply a branch-and-bound
algorithm to search for an optimal subsumption hierarchytlie input packages. Some non-trivial graph-theoretic
optimizations have allowed us to prune the search spacdisarily. A number of heuristic search strategies were
developed to further improve performance. A combinationtimizations and heuristi€sllowed us to fully infer
the optimal subsumption hierarchies of medium-sized sofvpackages such as JRU¥68 classfiles, 832KB) and
Jythor? (336 classfiles, 720KB). Our implementation, howevergfhilo complete the inference task in a reasonable
amount of time when presented with Kal@46 classfiles, 1.4MB). Although further experimentatiwould have
allowed us to come up with increasingly competitive heigssttwo observations disturbed us:

1. The optimal subsumption hierarchies contain too many cenfamt domains to be comprehensible for human
programmers.For example, the optimal subsumption hierarchy for JRubytaios 317 confinement domains
(out of 468 classfiles), while the optimal subsumption highmg for Kawa features 469 confinement domains
(out of 746 classfiles). Admittedly, there are exceptionsvirich the numbers are slightly more reasonable,
(e.g., 189 confinement domains out of 336 classfiles for dythHut they are exceptions rather than the norm.

2. Better heuristics probably would not improve the tracteypibf constraint solving muctOne thing we tried was
to use the same heuristic strategy to solve a constraintgotwice, and used the optimal solution obtained in
the first round as an initial solution for the branch-and+mbalgorithm in the second round. We would have
expected that, given the aggressive initial bound, thersboound of constraint solving would be significantly
more efficient than the first round. To our surprise, no sigaift performance differential was observed. This
means that the branch-and-bound algorithm was not ableforpemuch pruning until it got very deep into the
search tree.

Both of the observations suggest that the current formaraif DOC type inference is under-constrained, resulting in
the proliferation of confinement domains and the ineffegtiss of heuristic search strategies.

We still believe that maximization of the number of confinetngomains is a security-wise sound criterion. What
is missing from the formula is probably additional critesizch as natural-ness and comprehensibility. We conjecture
that formalization of these criteria will result in a dengatial digraphG, which will in turn lead to more efficient
constraint solving and subsumption hierarchies of moreagaable complexities. Validation of these conjectures
clearly belongs to future work.

6 Concluding Remarks

6.1 Discussion

DOC was originally discovered during the study of a more sstffated capability type system [14], in which the
data flow trajectory of an object reference can be constiiauige a capability type with a structure resembling the
sequential fragment of CSP [18]. DOC was superimposed smtépiability type system to counter a class of capability
spoofing attacks. It was later recognized that capabilitgldivation and capability leaking are two general issues th
capability type systems similar to [14] must wrestle witiheTsuccessful experience of constructing the capability ty
system in [14] on top of DOC leads us to believe that DOC coelliesas a basic building block for more sophisticated
capability type systems, providing the infrastructuredapability confinement.

Shttp://jakarta. apache. or g/ bcel .

6Details to be given in an up-coming technical report.
"http://jruby. sourceforge. net.

Shttp: //www. j yt hon. or g.

Shtt p: // ww. gnu. or g/ sof t war e/ kawa.

12

6.2 Related Work

Confined Types. DOC can be considered a discretionary variant of confinedstyp9, 17, 30]. The first point of
comparison is that, while the confinement boundaries of nedftypes are absolute and uniform, those in DOC are
semi-permeable and discriminatory, allowing capabilitgrding through discretion and reference acquisitionugho
subsumption. A unique feature of our type system is thateefees may escape from a confinement domain so long
as it assumes a certain non-bypassable abstract intekidaiée Vitek et al identify confinement domains with Java
packages, thereby reusing the access control semanticckage private members, the subsumption hierarchy of
DOC is independent of the Java package semantics. Alsgjpbettles for confined types block reference leakages at
their originating sites, while the type rules of DOC tardieigal reference acquisition at the receiving ends. Thii sh
of focus is motivated by the need of discriminatory confinetieduced by the trust relation. Lastly, bytecode-level
implementation of confined types involves an iterative flowlgsis element [9]; link-time type checking of DOC does
not.

Ownership Types. Ownership types [23, 5, 4, 2, 1] is a family of typing disci@s for preventing leaking of
references to the internal representation of an aggredp¢eto It works at a granularity that is finer than confined
types: whereas confined types prevent reference leakingegbdckage level, ownership types prevent leaking of
component references outside of an aggregate object. Acylartrelevant formulation of ownership types is the
recent proposal of ownership domains [1]. Our work sharehk {#i the approach of using multiple encapsulation
boundaries (aka domains) to specify non-uniform aliasiolicigs. [1] also allows fine-grained inter-domain alising
constraints to be specified through timk directive. A similar role is filled in this work by the subsutigm hierarchy.
While our trust relation as induced by the subsumption hétrais much less flexible than the user-specified link
relation in [1], it nevertheless represents a natural smibr a wide varieties of modeling problems.

Composable Encapsulation Policies. This work shares with Composable Encapsulation PolicidsP)J26, 25]

the concern of providing alternative interfaces for midiplient categories. The role of encapsulation policies is
analogous to capabilities in DOC. Soh et al [26] offer an insightful comparison between CEP and Jawerfates.
Most of the analysis also applies to DOC, except for one. TBé&Y rightly observe that abstract interfaces could
have been used for moduling encapsulation policies hadtibeen the fact that encapsulation policies modeled as
such are not enforceable. Under DOC, encapsulation psl@ipressed in Java interfacemindeed be enforced as
capabilities. DOC can therefore be seen as the least imérasgmentation to Java that turns interfaces into enfbteea
encapsulation policies. CEP, however, offers a more flexishguage for specifying encapsulation policies than
Java interfaces: provision of fine-grained access rights, (called, overridden, reimplemented) and composition
of encapsulation policies, etc. Whereas CEP offers pentctilass customization of encapsulation policies, DOC
customizes the capability of an object reference using menfent domains and subsumption relations. Whereas the
implementation of CEP involves dynamic checks, DOC is acstly enforceable type system.

Pluggable Verification Modules. The PVM framework [10] of the Aegis VM [8] is based on a modwerifi-
cation architecture called Proof Linking [11]. The correxss of Proof Linking, especially its interaction with lazy
dynamic linking, has been studied rigorously [12]. The eotness proof has been generalized to account for multiple
classloaders [13]. Both JAC [21] and confined types have baptemented under the PVM framework [10, 9]. As
reported in Sect. 4.2, the simplicity of DOC results in anréase in size of TCB that is more competitive than a
typical implementation of an alias control type system.

6.3 Future Work

We plan to extend this work along three directions. Firstlg plan to establish the soundness of DOC in Feather-
weight Java [20]. Secondly, we plan to evaluate the utilftp®C in a medium-sized software development project
involving the construction of extensible systems. Throtlgh exercise, we plan to document any coding idioms and
design patterns pertaining to the use of DOC. Thirdly, wa pdeexplore more constrained formulations of DOC type
inference, and also the design of heuristics and/or appratkdn algorithms for these formulations. The goal is to

13

construct program development environments that can affeice to developers regarding how DOC confinement
domains should be organized.

6.4 Conclusion

A lightweight, statically enforceable type system, Disicngary Object Confinement, was proposed. Its utility in
facilitating a useful form of secure cooperation was exgioin the context of extensible systems. Formulated at the
bytecode level, the type system is enforceable at link tignéhb code consumer. Type checking is highly efficient,
involving only a linear-time scan of classfiles. A link-timyge checker has been implemented, yielding only a modest
increase to the size of the TCB. The problem of inferring tgpeotations from legacy code base was shown to be
NP-complete. Preliminary experiences in the design andeim@ntation of type inference algorithms were discussed.

A Proof of Theorem 1

The type inference problem of DOC can be viewed in abstrattteafollowing optimization problem:

MAXx-SCCProblem (Optimization Version): Given a digraphG and a listL of pairs of arcs, at least one arc from
each pair inL is to be selected and addeddo Which combination of arc selection will result in a graphiwit
the maximum number of strongly connected components?

The decision version of this problem can be formulated devial.

Max-SCCProblem (Decision Version): Given a digraph, a list L of pairs of arcs, and a positive integkT, a set
S of arcs is to be selected froy, such that for each pair of arcs i at least one arc belongs £ Does the
digraphG* obtained by adding to G has at leask strongly connected components?

This appendix provides a formal proof thataM-SCC is NP-complete. The result is obtained by a reductiom fthe
following intermediate problem.

Acyclicity Maintenance (AM) Problem: Let G(V, A) be an acyclic digraph anfl be a list of pairs of arcs. For each
arc(u,v) € L,u,v € V but(u,v) ¢ A. Suppose a st of arcs is to be selected frof such that for each pair
of arcs inL, at least one arc belongs fo CansS be selected in a way that the digraph obtained by adding
to G contains no directed cycle?

A special case of Mx-SCC, the problem AM can be shown to be NP-complete by a redufiom the following
problem:

1-IN-3 3SAT Problem: Given a Boolean formula in conjunctive normal form such that each clause contaireeth
positive literal, is there a satisfying truth assignmemtfcuch that each clause ¢nhas exactly one true literal?

1-IN-3 3SAT can be shown to be NP-complete by a reduction fromi3[&6].
Theorem 2 AM is NP-complete.

PrRoOOF. We first show that the AM problem belongs to NP. Suppose wgiges an acyclic digraplr and a list
L of pairs of arcs. A nondeterministic algorithm needs onlgsgia sef of arcs. For each arc ifi, checking whether
itis in L. For each pair of arcs i, checking whether at least one arc from the pair belongs. tdhen, checking
whether the digraph obtained by addifgo G does not have any directed cycle. It is easy to see that thesks
can be accomplished in polynomial time. Thus, AM belongs® N

We then show that the AM problem is NP-hard by proving a redaodf 1-IN-3 3SaT to AM. Let ¢ = C; A
Cy A -+ AN Cy, be an instance of 1N-3 3SAT problem, i.e., a Boolean formula in conjunctive normal famvhich
each clause contains three positive literals. €ete x;1 V 240 V 243, for1 < i < m.

We now construct an acyclic digraght = (V, A) and a listL of pairs of arcs. Lel = {vy,v9,...,v6m}-
Construct the arc set as follows:

A = {(v6i—1,V6i—3), (Vei—2, V6i—1)s (V6i, Vei—s) : 1 <@ < m}.

14

The intention is that the subgraph inducedy= {vg;_5, vgi—a, - - ., Us; } represents the claugg, for 1 <i < m.
We next construct a list of pairs of arcs. For <i < mandl < j < 3, letthe arai;; = (Vg(i—1)+2j—1, Vo(i—1)42;)
correspond to the literal;;. Also, leta;; = (vg(i—1)+25, Ve(i—1)+2j—1)- The listL will be constructed in terms af;;
anda;;. We first creat&m pairs of arcs folL as follows: For each clauge; = ;1 V z;2 V 233, 1 <@ < m, we create
a setA; of 3 pairs of arcs:
A; = {{ai, ain}, {aie, ais}, {ais, ain }}.

Then, for each variable that appears more than oneg mg., k times, we create a set @k pairs of arcs forL.

Let y be such a variable that appedrdimes such thay = x;,;, = 4,5, = -+ = w;,,, Where the subscripts
i171,%272, - - . , 4xjx form a lexicographic order. We create a ggtof 2k pairs of arcs
By = {{a'hjn i, }7 {ailjl) ai2j2}’ {aizjw aizjz}v {&izjz) Qigjs }> R

{aikjkv a’ikjk}7 {dikjkvailh}}'

We now finish the construction d@f, which is the union of4; (1 < ¢ < m) andB, for each variablg appears more
than once inp. In order to show the relations between the elements, iwe introduce an undirected gragh L),
called the graph of,, such that each arc ih corresponds to a vertex (L), and each element (i.e., pair of arcs) in
L corresponds to an edged(L). Fig. 6 illustrates the construction 6fandL. It is easy to see that we can construct
the above~ and L in polynomial time.

We claim that there exists a satisfying truth assignmenpfeuch that each clause ¢nhas exactly one true literal
if and only if there exists a s&t of arcs satisfying the following three conditions: (1) Eaeh in S is contained inL;
(2) for each pair of arcs i, at least one arc belongs £ and (3) the digrapld-* obtained by adding to G does
not have directed cycles. We first suppose that there exgtisdying truth assignment fagrsuch that each clause in
¢ has exactly one true literal. For each cladsel < i < m, containing exactly two false literals, say,; andz;;/,
j # j', we put the corresponding two ares; anda;;s into S (see Fig. 7). Since,; anda,; are contained im;,
condition (1) holds. Notice that each pair of arcsdipcontainsa,; or a;;-. For each variablg appearing: > 2 times
in ¢ and its corresponding sét,, if y is false, thenS containsk arcsa;, ;, , @, j,, - - -, @4, - Thus, each pair of arcs
in B, contains at least one arc i If y is true, then we puk arcsa;, j, , @i, j,, - - - , @i\ j, INt0.S. Hence each pair of
arcs inB,, contains at least one arc in the updatedifter we consider all clauses; and variableg, we obtain a set
S of arcs which satisfies conditions (1) and (2). We now condite digraphG* obtained by adding to G. We can
partition V' (G*) into m subset¥; = {vg;_5,v6i—4, - - ., Vsi },» 1 < i < m such thall; corresponds to the clausg. It
is easy to see that no arcsd# connecting two vertices ii; andV; (j # 4) respectively. The digraph induced by
is denoted by(V;). For any(V}), it is easy to check this digraph has no directed cycle. Famgte, letr;; be the true
literal in C;. If variablex;; appears only once i3, then(V;) has the arc set

{(Uﬁi—47 'U6i—3)a (Uﬁi—37 'U6i—2)7 (U6i—27 Uﬁi—l)a ('U6i—1a Uﬁi)a (UGia UGi—5)}-

If variable z;; appears more than oncednthen(V;) has the arc set

{(v6i—a,v6i—3), (V6i—3,V6i—2), (Vei—2, V6i—1), (Vei—1, V6i), (Veis Vei—5), (Vei—a, V6i—5) }-

Thus, the digraplé-* has no directed cycle. Hence, condition (3) holds.
Conversely, suppose that there exists a%eff arcs satisfying the above three conditions.SItontains three
different arcs in4;, thenG* has a directed cycle

{(’U6i75a U6i74)> <U6i747 U6i73)7 (’UﬁifS; U6i72)a (U6i727 ’U6i71)3 (U6i71> U6i)7 (UGi7 ’UGi75)}~

This contradicts condition (3). I§ contains only one arcs iA;, then there exist a pair of arcsiy C L in which both
arcs are not irb. This contradicts condition (2). ThuS,contains exactly two different arcs iy, 1 < i < m. We can
set FALSE to the two literals corresponding to these two arcs, and Be€To the remaining literal i’;. We now show
that any variable that appears > 2 times ing has the same truth assignment. yet x;,;, = i,j, = -+ = Ti, j,.»
where the subscripts j1, i2jo, - - - , irjx form a lexicographic order. Assume that not all these lisehave the same
truth assignment. There must exist two literals; andx;,,,;,,, such thatr; ; =FALSE andz;,,,; ., =TRUE,

wherep + 1 =mod). Thus,a;,;, € S anda;, ., ;,,, ¢ S. Since(a,;,,ai,.,j,.,) iS a pair of arcs inB, C L,

15

Vl V2 V3 \4 g Y

.m

V7 VS \6 \{0 Yl YZ

o ®oe————=0 o———=0

V13 \/14 \4.5 \{6 Y7 YS
(@G

(b) The graph of L

Figure 6: The graplk andG (L) constructed from an instance of -8 3SAT (y1 Vya Vys) A (y1 Vys Vya) A(y1 V
Y2V ys).

16

(a) G*

a, @1 &,

(b) The graph of L
Figure 7: Supposg, = y4 =TRUEandy; = y3 = y5 =FALSE for formula(y; Vy2 Vys) A(y1 Vyz Vya) A(y1 Vya Vys).

The dashed arcs in (a) belong$o The dashed vertices in (b), which correspond to the falemls, also correspond
to the arcs ins.

17

it follows from condition (2) that;,;, € S. Sincea;,;, anda,,;, form a directed cycle, this contradicts condition
(3). Hence, any variable that appears more than ongehias the same truth assignment. Therefore, there exists a
satisfying truth assignment fgrsuch that each clause ¢nhas exactly one true literdll

Theorem 3 MAX-SCCis NP-complete.

PrROOF. We first show that the MXx-SCC problem belongs to NP. Suppose we are given a digihlist of
pairs of arcd., and an positive integdk’. A nondeterministic algorithm needs only guess aSset arcs. For each arc
in S, checking whether it is itl.. For each pair of arcs i, checking whether at least one arc from the pair belongs
to S. Since computing the strongly connected components ofrajgligcan be performed in linear time [28], It is easy
to see that SCC belongs to NP.

We now show that the Mx-SCC problem is NP-hard by establishing a reduction of AM taXMSCC. Given
an instance of the AM problem, that is, an acyclic digrapland a listL of pairs of arcs, we construct an instance
of MAX-SCC by settingZ = G, L = L andK = |V|. This construction needs linear time. L&te a set of arcs
selected froml, such that for each pair of arcs Iy at least one arc belongs £ Let G* be the digraph obtained by
addingS to G. We can sef = S andG* = G* for G andL. It is easy to see that* is acyclic if and only ifG* has
at leastK strongly connected componenill.

References

[1] Jonathan Aldrich and Craig Chambers. Ownership domdagparating aliasing policy from mechanism. In
Proceedings of the 18th European Conference on Objectr@ribProgrammingOslo, Norway, June 2004.

[2] Chandrasekhar Boyapati, Barbara Liskov, and Liubar&hi®wnership types for object encapsulationPh-
ceedings of the 30th ACM SIGPLAN-SIGACT Symposium on plésadf Programming Languages (POPL'03)
pages 213-223, New Orleans, Louisiana, USA, January 2003.

[3] John Boyland, James Noble, and William Retert. Captdslifor sharing: A generalization of uniqueness and
read-only. InProceedings of the 2001 European Conference on Objecth@ueProgrammingpages 2—27,
Budapest, Hungary, July 2001.

[4] Dave Clarke and Sophia Drossopoulou. Ownership, entdafisn and the disjointness of type and effect. In
Proceedings of the 17th ACM SIGPLAN Conference on Objeigtr@d Programming, Systems, Languages,
and Applicationspages 292—-310, Seattle, Washington, USA, November 2002.

[5] David G. Clarke, John M. Potter, and James Noble. Owngtgpes for flexible alias protection. Proceedings
of the 13th ACM SIGPLAN Conference on Object-Oriented Rnogning, Systems, Languages, and Applications
(OOPSLA'98) pages 48—64, Vancouver, BC, Canada, October 1998.

[6] Ellis Cohen and David Jefferson. Protection in the Hydperating system. IfProceedings of the 5th ACM
Symposium on Operating System Princippesges 141-160, Austin, Texas, USA, November 1975.

[7] Jack B. Dennis and Earl C. Van Horn. Programming semaufiticmultiprogrammed computation€ommuni-
cations of the ACM9(3):143-155, March 1966.

[8] Philip W. L. Fong. The Aegis VM Projectht t p: / / aegi svm sour cef or ge. net ., 2004.

[9] Philip W. L. Fong. Link-time enforcement of confined typfor JVM bytecode. Technical Report CS-2004-12,
Department of Computer Science, University of Regina, Reegbaskatchewan, Canada, December 2004. ISBN
0-7731-0505-0.

[10] Philip W. L. Fong. Pluggable verification modules: Antemxsible protection mechanism for the JVM. Rro-
ceedings of the 19th Annual ACM SIGPLAN Conference on Qfjgented Programming, Systems, Languages,
and Applications (OOPSLA'O4pages 404-418, Vancouver, B.C., Canada, October 2004.

18

[11] Philip W. L. Fong.Proof Linking: A Modular Verification Architecture for MdeiCode System#$hD disserta-
tion, School of Computing Science, Simon Fraser UniverBitynaby, B.C., Canada, January 2004.

[12] Philip W. L. Fong and Robert D. Cameron. Proof linking:otular verification of mobile programs in the
presence of lazy, dynamic linkingACM Transactions on Software Engineering and Methodql®&g):379—
409, 2000.

[13] Philip W. L. Fong and Robert D. Cameron. Proof linkingisiiibuted verification of Java classfiles in the
presence of multiple classloaders Aroceedings of the USENIX Java Virtual Machine Researchlaestinology
Symposium (JVM'01pages 53—-66, Monterey, California, USA, April 2001.

[14] Philip W. L. Fong and Cheng Zhang. Capabilities as atiastrol: Secure cooperation in dynamically exten-
sible systems. Technical Report CS-2004-3, Departmentafifliter Science, University of Regina, Regina,
Saskatchewan, Canada S4S 0A2, 2004. ISBN 0-7731-0479-8.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and JohnsMigs. Design Patterns: Elements of Reusable
Object-Oriented SoftwareAddison Wesley, 1994,

[16] Michael R. Garey and David S. JohnsorComputers and Intractability: A Guide to the Theory of NP-
Completenesdreeman, 1979.

[17] Christian Grothoff, Jens Palsberg, and Jan Vitek. Brakating objects with confined types. Pnoceedings of
the 16th ACM SIGPLAN Conference on Object-Oriented Prognarg, Systems, Languages, and Applications
(OOPSLA'01) pages 241-253, Tampa Bay, FL, USA, October 2001.

[18] C. A. R. Hoare.Communicating Sequential ProcessEsentice Hall, 1985.

[19] Chris Howblitzel, Chi-Chao Chang, Grzegorz CzajkoivEleyu Hu, and Thorsten von Eicken. Implementing
multiple protection domains in Java. Rroceedings of the 1998 USENIX Annual Technical Conferedes
Orleans, LA, USA, June 1998.

[20] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadkeatherweight Java: A minimal core calculus for Java
and GJ.ACM Transactions on Programming Languages and Syst28§3):396—-450, May 2001.

[21] Gunter Kniesel and Dirk Theisen. JAC — access right basedpsutation for JavaSoftware — Practice and
Experience31(6):555-576, May 2001.

[22] Tim Lindholm and Frank YellinThe Java Virtual Machine SpecificatioAddison Wesley, 2nd edition, 1999.

[23] James Noble, Jan Vitek, and John Potter. Flexible gliatection. InProceedings of the 12th European Confer-
ence on Object-Oriented Programmir8russels, Belgium, July 2004.

[24] Jonathan A. Rees. A security kernel based on the lanchttadus. A. 1. Memo 1564, MIT, 1996.

[25] Nathanael Scirli, Andrew P. Black, and Séphane Ducasse. Object-oriented encapsulation for dyadlyni
typed languages. IRroceedings of the 19th Annual ACM SIGPLAN Conference oecdjriented Program-
ming, Systems, Languages, and Applications (OOPSLAag)es 130-149, Vancouver, B.C., Canada, October
2004.

[26] Nathanael Scirli, S&phane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Conlpesalapsulation policies. In
Proceedings of the 18th European Conference on Objectr@ritProgrammingOslo, Norway, June 2004.

[27] Michael D. Schroedefooperation of Mutually Suspicious Subsystems in a Compitiléy . Ph.D. thesis, MIT,
1972.

[28] R. E. Tarjan. Depth-first search and linear graph ators. SIAM Journal on Computind.:146-160, 1972.

19

[29] Jan Vitek and Boris Bokowski. Confined types in JaSaftware - Practice & Experien¢81(6):507-532, May
2001.

[30] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweightfioement for featherweight Java. Rroceedings
of the 18th Annual ACM SIGPLAN Conference on Object-Ortéftsogramming, Systems, Languages, and
Applications (OOPSLA'03pages 135-148, Anaheim, California, USA, October 2003.

20

