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Abstract

Security flaws are routinely discovered in commercial imple-
mentations of mobile code systems such as the Java Virtual
Machine (JVM). Typical architectures for such systems ex-
hibit complex interdependencies between the loader, the ver-
ifier, and the linker, making them difficult to craft, validate,
and maintain. This reveals a software engineering challenge
that is common to all mobile code systems in which a static
verification phase is introduced before dynamic linking. In
such systems, one has to articulate how loading, verification,
and linking interact with each other, and how the three pro-
cesses should be organized to address various security issues.

We propose a standard architecture for crafting mobile
code verifiers, based on the concept of proof linking. This
architecture modularizes the verification process and iso-
lates the dependencies among the loader, verifier, and linker.
We also formalize the process of proof linking and establish
properties to which correct implementations must conform.
As an example, we instantiate our architecture for the prob-
lem of Java bytecode verification and assess the correctness
of this instantiation. Finally, we briefly discuss alternative
mobile code verification architectures enabled by our mod-
ularization.

1 Introduction

Recent years have witnessed a significant growth of interest
in mobile code in the form of active contents (e.g. applets)
or code-on-demand [2]. Java [7] has emerged as an industrial
standard for crafting mobile code of the mentioned forms.
One of the crucial language features behind this success is
Java’s claim of security. As a mobile code hosting environ-
ment (e.g. browser) brings in programs of untrusted origin,
it is imperative to guarantee that the untrusted program
does not exploit the hosting machine in any undesirable
way. As some authors have pointed out, Java security is
type safety [13]. As long as the strict type rules are not
violated, a piece of mobile code is guaranteed to behave in a
well-mannered way. To enforce type safety, a bytecode veri-
fier [10] is invoked prior to the execution of untrusted code.
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The verifier makes sure that all type rules are honored in the
code. The verification algorithm is a very complex process
including type checking and data-flow analysis. Due to the
complexity of the verification algorithm, it is a nontrivial
undertaking to produce an implementation that is correct.
Because of this, various security breaches were discovered in
several major implementations [8, 17]. Given that security
is a critical concern for parties hosting mobile code, it be-
comes imperative to have a way of validating the bytecode
verifier itself.

The current implementation from Sun and other vendors
make the validation of the bytecode verifier very difficult.

1. Interleaving logic. The Sun bytecode verifier inter-
leaves verification, loading, and linking. In the mid-
dle of verifying a class, new classes might have to be
brought in to provide enough information for the ver-
ification to proceed. It is therefore difficult to single
out a “verifier” module and validate it individually.

2. Delocalized implementation. The Sun bytecode
verifier has a four-pass architecture. Pass one is per-
formed at load-time; pass two and three are performed
when a class is actually linked into the run-time envi-
ronment; pass four is performed at run-time. Conse-
quently, checks are spread all over the run-time system,
and it is difficult to guarantee the completeness of the
verification process.

It has been well-known in program understanding literature
that interleaving and delocalized program plans lead to pro-
grams that are difficult to comprehend [15, 9]. This so-called
“scattershot security” [13] renders validation of the verifier
extremely difficult.

Not only this, interleaving and delocalization result in an
overly tight coupling between the verifier and the rest of the
Java run-time environment. Whenever a flaw is found in the
verifier, the entire run-time environment (e.g. a browser) has
to be replaced. Avoiding instability, many system adminis-
trators simply do not acquire the latest versions of browsers,
leaving the users open to well-published security attacks.

Despite the above shortcomings, the mentioned four-pass
architecture is designed for the purpose of making dynamic
linking possible. A verification pass is applied to a class only
when necessary. In this way, classes can be loaded in and
linked together in an incremental fashion. Dynamic linking
has two advantages:

1. Flexibility in configuration management: Be-
cause a class is linked in only when it is needed by



the run-time environment, one can make sure that the
latest version of the class is used. This eliminates the
need for relinking the software when a class is changed.

2. Loading efficiency: Applets/servlets start running
as soon as the necessary code is loaded and linked.
There is no need to load or verify a class if it is not
needed in a particular execution session. This per-
formance advantage is particularly obvious for classes
with high static coupling but low dynamic coupling.

Although this ability to load and link classes dynamically
has much to be desired, its current implementation intro-
duces complex interactions among the class loader, the ver-
ifier, and the linker.

The above analysis reveals a software engineering chal-
lenge that is common to all dynamically-linked languages
with high security concern. In particular, for mobile code
systems in which each dynamically-loaded compilation unit
is subject to a static verification phase before its execu-
tion, one has to determine how loading, verification, and
linking interact with each other, and how to organize the
three processes to address various security issues. In a tra-
ditional run-time environment, the loading and linking of
program code is relatively modularized. Dynamic-linking
in such an environment is common. However, as we start
to introduce a verification phase into a dynamic-linking sys-
tem, coupling among the loader, verifier, and linker increases
dramatically. We argue that a well-designed mobile code ar-
chitecture should localize all the security-related code into
a stand-alone verifier module. In particular, it should al-
low one to (1) craft and wvalidate the mobile code verifier
as an individual engineering component independent of the
run-time environment (e.g. browser, server, appletviewer),
and (2) make the verifier a replaceable module that can be
upgraded without changing the run-time environment.

In this paper, we propose a language-independent infras-
tructure for building dynamically-linked mobile code sys-
tems. Our design results in a run-time environment in which
static verification is encapsulated in a stand-alone, replace-
able module, while at the same time preserving dynamic-
linking. The interaction among loading, verification, and
linking is precisely isolated so that the correctness of their
interaction can be established formally. In our proposal,
given a compilation unit, the verifier computes a conserva-
tive precondition that will make the compilation unit pass
the verification. It then submits the precondition to a proof
linker. The proof linker maintains a database of all known
facts of the loaded compilation units, plus a set of precon-
ditions asserted by the verifier. Its role is to make sure
that dynamically-loaded compilation units do not introduce
into the database facts that violate preconditions already
asserted by the verifier. This design results in a mobile code
loading architecture in which the verifier module can be val-
idated separately, and can be replaced easily when needed.
Moreover, we formally state the sufficient conditions for the
correctness of proof linking. The correctness conditions are
expressed in terms of a partial ordering of linking events, and
as properties of the database’s data model. We demonstrate
how one can formulate Java type checking in our framework,
and we also establish the correctness of this formulation.

The architecture for modular verification is described in
section 2. Section 3 develops a theoretical framework in
which we can articulate the correctness of modular verifi-
cation in the presence of dynamic linking. Section 4 ap-
plies the modularization to Java bytecode verification, and
demonstrates how the correctness of modular verification
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can be established. In section 5, we briefly discuss alter-
native mobile code verification architectures enabled by our
modularization. The paper concludes with a discussion of
related work and potential extension to our work (section
6).

2 A Dynamic-Linking Architecture

We assume that a program is composed of one or more com-
pilation units. Each compilation unit is uniquely identified
by a symbolic name. A compilation unit may contain ref-
erences to other compilation units through the use of their
symbolic names. When a program is executed, its compila-
tion units are loaded, verified, and the symbolic references
that refer to other compilation units are incrementally re-
placed by actual machine pointers.

In the dynamic-linking architecture we are about to pro-
pose, loading, verification, and linking are performed by
three separate modules. No module attempts to invoke any
other during its processing, nor will one recursively invoke
itself. This poses the following challenge: Verification re-
quires knowledge of other compilation units which might not
be loaded yet. How do we remove such dependencies while
maintaining the integrity of the verification process?

Modular verification. Figure 1 depicts the setup for mod-
ular verification. Untrusted compilation units are subjected



to static verification after loading. The verifier might need
the knowledge of another compilation unit in order to decide
if the current compilation unit should be endorsed. Instead
of recursively loading (or even verifying) the other compila-
tion unit, the verifier computes a conservative safety precon-
dition that will guarantee the safety of the compilation unit.
The safety precondition is represented as a conjunctive set
of database queries. For example, during the verification of
a Java classfile, we might find out that an exception of class
ArithmeticException is raised by the code in the classfile.
Since the classfile is safe only if ArithmeticExceptionis a
subclass of the Java class Throwable, the verifier formulates
the queryl 7subclass(ArithmeticException, Throwable).
The Java verifier may end up generating many such queries.
The conjunctive set of all queries formulated by a verification
session becomes the safety precondition for endorsing the
classfile being considered. Moreover, each of the queries de-
scribes the property of a specific symbolic reference. For ex-
ample, the precondition ?subclass (ArithmeticException,
Throwable) is a property of class ArithmeticException. So,
when a query is generated, it is attached to a symbolic refer-
ence not yet resolved. The query is said to be the proof obli-
gation for resolving the symbolic reference. A global obliga-
tion tableis used to store the obligations that are attached to
symbolic references. Obligations represent conditions that
must be met if the run-time system attempts to resolve the
symbolic reference in the future.

In order for the run-time system to discharge the proof
obligations, the verifier also computes, for each compila-
tion unit, a set of clauses called commitments. The com-
mitments are facts that describe the structural properties
of the compilation unit. For example, during the verifica-
tion of the Java classfile ArithmeticException, the verifier
generates a commitment !extends(ArithmeticException,
Exception) to indicate that Exception is the immediate
superclass of ArithmeticException. The generated com-
mitments are asserted into a global commitment database.
When the proof obligations are to be discharged, the com-
mitment database provides the set of facts against which the
query can be evaluated.

Proof linking. The process by which the run-time system
cross-validates the results of verifying different compilation
units is called proof linking. Figure 2 describes the proce-
dure for proof linking. When the run-time system needs to
resolve a symbolic reference to a machine pointer, it sends
the request to a proof linker. The proof linker looks up
the obligations that have been attached to the symbol, and
then posts them to the commitment database as deductive
queries. If the queries are satisfied, then the linker will be
activated to proceed with the resolution. Otherwise, a link-
ing exception will be raised to signal this failure to endorse
the interoperability of the compilation units.

To make proof linking more expressive, arbitrary logic
programs can be provided as an initial theory in the com-
mitment database. For example, recursive queries of the
following form can be written to capture the transitive clo-
sure of subclassing relationship:

subclass(X, Y) :- extends(X, Y).
subclass(X, Y) :- extends(X, Z),
subclass(Z, Y).

If the verifier asserts commitments

1To differentiate the various roles played by a predicate symbol,
we prefix a query by a question mark (“?”) and an assertion by an
exclamation mark (“).

lextends (ArithmeticException, Exception)
and

lextends (Exception, Throwable)
then the obligation

?subclass (ArithmeticException, Throwable)

can be deduced.

Type-safe linking. Although it is ultimately our intention
to apply the proof linking architecture to other types of mo-
bile code verification problem, we restrict our attention in
this paper primarily to the issue of type safety, with the
specific example of Java byte code verification. In this con-
text, we can characterize our architecture in the framework
of Cardelli’s theoretical treatment of type-safe linking [1].
In short, module verification in our system is comparable to
Cardelli’s intra-checking, while proof linking may be viewed
as an incremental form of inter-checking. Our approach dif-
fers substantially in the treatment of typing environments.
In particular, we replace the notion of an import environ-
ment as an input to intra-checking by our notion of obliga-
tions produced as output. In essence, obligations represent
a logical specification of all allowable typing environments
for which a module intra-checks. This technique is key to
our implementation of lazy dynamic linking. The second
distinction in the treatment of typing environments is that
we replace the notion of export environments by the set of
commitments produced during module verification. In this
case, however, the replacement is a more-or-less a direct en-
coding of the typing environment in logical form.

Although the components of our proof-linking architec-
ture may be related to Cardelli’s theoretical framework for
type-safe linking in this way, that framework provides no
justification for our use of the the use of these components
to achieve incremental dynamic linking. In essence, we may
have confidence that our architecture is correct, assuming
that all modules are loaded and linked before execution be-
gins, but how can we be sure that it is safe to permit execu-
tion to proceed while some modules remain unlinked? This
is a critical problem in validation of mobile code verification
systems and is the topic of the next section.

3 Correctness of Incremental Proof Linking

In this section, we develop an argument for the correctness
of incremental proof linking, while assuming that the overall
logic of our verification method is correct in the nonincre-
mental sense. Our argument is based on the following three
conditions for correctness.

1. Safety: All obligations relevant to the safe execution
of a code fragment are checked before that fragment is
executed.

2. Monotonicity: Once an obligation is checked, no
subsequently asserted commitment will contradict it.

3. Completeness: All commitments that may support
an obligation will be generated before the obligation
is checked. That is, safety of a program will not be
prematurely ruled out.

Our goal is to establish a set of properties to which an imple-
mentation of proof linking must conform in order to ensure
that these correctness conditions hold.



3.1 A Model of Dynamic Linking

In the proof linking architecture, loading, verification, and
linking are all atomic in the sense that, although they may
occur concurrently, none of them include another recursively
as a sub-operation, nor do they communicate directly with
each other. Therefore, we assume that the run-time envi-
ronment defines a set of linking primitives, each of which
can be executed at most once during the life-time of the
run-time environment. FEach linking primitive performs a
basic operation on a compilation unit or a symbolic refer-
ence thereof. Minimally, they should include the following
for each compilation unit X:

load X: acquire compilation unit X.
verify X: verify compilation unit X.

resolve S in X: replace symbolic reference S in compila-
tion unit X with an actual machine pointer.

use S in X: symbolic reference S in compilation unit X is
used for the first time.

One could see the linking primitives as events that hap-
pen asynchronously in a mobile code system. We assume
that such events are then queued up in some synchronized
event queue, waiting to be processed by the run-time sys-
tem. The sequence of linking primitives that enters the event
queue from the beginning of an execution session to some
point of execution is said to be an execution trace of the
run-time system in that period of time.

Given a set P of linking primitives, a linking strategy
o = (P, <) is a partial ordering of the linking events in P.
Every implementation of a mobile code run-time system de-
fines a linking strategy. The strategy expresses the order in
which linking events are fired by the run-time system. More
precisely, an execution trace 7 is o-conforming if the follow-
ing hold: (1) all linking primitives in 7 are from P, and (2)
if y is in 7, then all z € P such that z <, y must occur in 7
before y. To say that a run-time system implements a link-
ing strategy o is to say that the run-time system guarantees
that all possible execution traces are o-conforming.

A linking strategy = = (P, <) is a substrategyof another
linking strategy o = (P, <,) iff z <, y implies z <, y for
every z,y € P.

A strategy is admissible if the following properties hold:
Given compilation units X and Y, we have

1. Natural Progression Property:

load X < verify X < resolve Y in X

2. Import-Checked Property:

verify Y < resolve YV in X <use Y in X
From now on we only consider admissible strategies.

3.2 Proof Linking

We assume that the execution of every linking primitive
generates two sets. The first is a set of first-order clauses
called commitments. Commitments describe the structure
of the compilation unit processed by the linking primitive.
The second is a set of guards. A guard is an ordered pair
of a linking primitive and a set of first-order queries. The

ProofLinker(I'g):

01: T «Tq; Q[ — 0;

02: Ready « 0; Checked « 0;
03: while (- terminated()) do
04: p < get-next-primitive();
05: for all o € Q[p] do

06: if (T F o) then

07: Checked «— Checked U { o };
08: else
09: raise exception in the thread that generated event p;

10: end if

11: end for

12: Ready «— Ready U { p };

13:  (Commitments, Guards) — execute(p);

14: T « T’ U Commitments;

15: for all (Obligation, Primitive) € Guards do
16: Q[Primitive] — Q[Primitive] U {Obligation};
17:  end for

18: end while

Figure 3: The Proof-Linker Model Algorithm

queries are said to be the obligationsof the associated linking
primitives?.

Figure 3 presents a model proof-linking algorithm in which
linking primitives are consumed from a global event queue.
The proof linker maintains two global data structures, a
commitment database (I') and an obligation table (€2). The
commitment database is a first-order theory containing both
facts and rules. The obligation table maps each linking
primitive to a set of database queries. Initially, the com-
mitment database contains an initial theory (I'g), and the
obligation table is empty (line 1). The proof linker removes
and executes linking primitives in the order specified by the
linking strategy (line 4). When a linking primitive is re-
moved from the event queue, its associated obligations are
looked up from the obligation table (line 5). These queries
are then verified by consulting the theory in the commit-
ment database (line 6). If the obligations cannot be deduced
from the theory, then a linking exception will be raised (line
9). Otherwise, the linking primitive is executed (line 13).
The result of execution is a set of new commitments and a
set of new guards. The commitments are asserted into the
commitment database (line 14). The guards associate new
obligations to linking primitives. These new associations
are incorporated into the obligation table (line 15-17). The
proof linker is then ready to accept a new request from the
event queue. The proof linker terminates when the run-time
environment terminates (line 3).

3.3 Formalization of Correctness Conditions

To formalize the correctness conditions of the proof linker,
we have introduced two auxiliary variables into the listing
in figure 3. “Checked” (in line 7) is the set of obligations
that are already checked by line 6. “Ready” (in line 12) is
the set of primitives that are ready for execution.

Given a fixed, admissible linking strategy o, the proof
linker is correct if the following conditions hold:

?Notice that we have generalized the role of obligations so that
they are not only attached to the resolve primitive (as discussed
in section 2), but can also be attached to arbitrary linking prim-
itive. Such generalization simplifies the formulation of correctness
conditions.



1. Safety: All obligations are checked before a primitive
is executed. For any linking primitives z and y, if =
may introduce the guard {o,y), then we require that
z <o y. In summary, the following invariant should be
true at all times:

Vp € Ready . Vo € Q[p] . 0 € Checked

2. Monotonicity: Obligations may not be contradited
by subsequently asserted commitments. In our sys-
tem, we confine our database to definite Horn clause
programs and definite queries. This avoids the prob-
lems that could arise if negation by failure were used.
In summary, the following invariant should hold at all
time:

Vo € Checked . T'F o

3. Completeness: A commitment c is said to be a sup-
port for obligation o if, possibly with other commit-
ments asserted by some linking primitives, it forms a
proof of o. If linking primitive z may assert a support
for o, and if 0 may be attached to linking primitive y,
then we require that z <, y. Thus, if the proof linker
does not raise an exception for some o-conforming ex-
ecution trace 7, then it does not raise an exception for
any o-conforming execution trace 7’ which is a permu-
tation of 7.

In summary, the correctness of proof linking depends on
(1) the linking strategy o, (2) the kind of logic we are us-
ing, and, (3) the commitments and obligations returned by
each linking primitive. Notice that the framework does not
impose a strict policy on the linking strategy. Both ea-
ger linking (linking every compilation unit in an one-fell-
swoop-manner) or lazy linking (linking a compilation unit
only when its code is being executed), and anything in be-
tween, can be tailored to satisfy the sufficient conditions. In
general, if two linking strategies satisfy the sufficient condi-
tions, with one being the substrategy of the other, we usually
prefer the latter.

4 An Example: Java Bytecode Verification

This section describes an instantiation of our modular veri-
fication framework. Specifically, we use Java bytecode veri-
fication as an example to illustrate various concepts we dis-
cussed in previous sections. We also give a proof (sketch) of
the correctness of proof linking for this instantiation of Java
bytecode verification.

The Java Linking Model. In Java, a class is a compilation
unit. Besides class names, Java symbols may refer to mem-
bers of a class. A member (a variable or a method) of a class
is uniquely identified by the member name and its descriptor
(type signature). The descriptor of a method specifies the
type of the parameters and the return value. Class symbols
and member symbols are resolved separately. We denote the
linking primitive that resolves, in class X, the method M of
class Y with descriptor S as “resolve Y::M(S) in X”.

We also introduce auxiliary primitives “endow Y” and
“endow Y::M(S)”. These primitives are introduced to im-
pose desirable ordering among other primitives, and they do
not correspond to any actual linking activities. In particu-
lar, complex obligations are attached to them, and supports

for such obligations are forced to be asserted before the aux-
iliary primitives are fired®.

We articulate an admissible strategy for Java linking.
Besides modifying the Natural Progression Property and the
Import-Checked Property to accommodate the introduction
of new primitives, we also need to capture the linking de-
pendencies peculiar to Java:

1. Natural Progression Property:

load X < verify X < endow X <
resolve Y in X < resolve Y:M(S) in X

2. Import-Checked Property:
endow Y < resolve Y in X
and also

endow Y < endow Y:M(S) <
resolve Y::M(S) in X <use Y:M(S) in X

3. Subtype Dependency Property: If Y is a super-
class or a superinterface of X then

verify Y < endow X

4. Referential Dependency Property: Sometimes,
the knowledge of other classes are needed before we
can correctly endow a class. If “verify X” asserts the
commitment “!relevant (Y, X::M(S))” then

endow Y < endow X:M(S)

In English, we need to verify all relevant classes before
we endow a method symbol for resolution.

Commitments and Obligations for Java. In Java, only the
“verify X” primitive generates commitments and obliga-
tions. Figure 4 describes the commitments generated by
“verify X”. Figure 5 describes the obligations generated
by “verify X7, together with the primitives to which the
generated obligations are attached®.

The Initial Theory. Figure 6 shows the clauses in the ini-
tial theory. For clarity, we have deliberately omitted the
rules for handling array classes. Specification of such rules
is straightforward.

Correctness of Java Proof Linking (Proof Sketch). The
above arrangement satisfies the sufficient conditions for cor-
rect proof linking:

1. Safety: Only “verify X7 generates obligations. Ac-
cording to figure 5, obligations are only attached to
“endow X7, “endow X::M(S)”, “resolve Y in X7,
and “resolve Y::M(S) in X. In any case, the Natural
Progression Property and the Import-Checked Prop-
erty guarantee that the contributors of obligations are
always fired before the primitives to which the obliga-
tions are attached.

3The actual Java loading model further involves two additional
primitives “prepare X" and “initialize X”. In principle, one can
always extend the current framework to include them if such refine-
ment starts to interact with verification; but since they do not, we
ignore them to facilitate our analysis.

4In principle, we could have formulated the commitments and obli-
gations related to the checking of resolution errors [10, chapter 5].
But the detection of resolution errors is not strictly part of the veri-
fication process, so we ignore it here.



'class(X)
X is a non-interface class.

tinterface(X)
X is an interface class.

'non_final(X)
X is not declared to be final.

lextends(X, Y)
Y is a direct superclass of X.

'implements(X, Y)

Y is a direct superinterface of X.
'member (X, M, S)

M with descriptor S is a member of X.

'publicmember(X, M, S)
The member M with descriptor S is public in X.

'protectedmember(X, M, S)
The member M with descriptor S is protected in X.

'privatemember(X, M, S)
The member M with descriptor S is private in X.

'default member(X, M, S)
The member M with descriptor S has default access in X.

Figure 4: Commitments that may be asserted by verify X

2. Monotonicity: The initial theory and the obligations
are all definite Horn clauses.

3. Completeness: Consider the obligation
7subclassible(Y) attached to “endow X”. Sup-
ports of the obligation are asserted by “verify Z”
where Z is either Y or one of its superclass. Since
Y is declared to be the superclass of X, the Subtype
Dependency Property guarantees that Y and all its su-
perclasses are verified before X is endowed. Therefore,
the obligation is consistently established.

Consider now the obligation

7assignment_compatible(Y, Z) attached to “endow
X::M(S)”. Since both Y and Z are relevant to X:: M (S)
if the the obligation is to be asserted, it follows from

the Referential Dependency Property that the super-

classes and superinterfaces of Y and Z are already ver-

ified when the obligation is tested. Thus, all the sup-

ports are already present, and the obligation can be

consistently established.

Using similar argument, one can prove the consistency
of every obligation attached to every primitive.

Generating commitments and obligations. We have imple-
mented a stand-alone Java bytecode verifier that generates
the commitments and obligations in figure 4 and 5. In Sun’s
implementation of the verifier, merging of two classes Z; and
7> yields their most specific common superclass [10]. Com-
putation of this superclass involves the recursive loading of
all superclasses of 73 and Z2. Our implementation avoids
recursive loading by representing the most specific common
superclass algebraically as Z; M Z,. All the obligations will
then be formulated in terms of these “aggregate” classes®.
It is straightforward to introduce additional rules into the

5Such algebraic representation does not affect the termination of
the data-flow analysis since only finitely many class symbols may
appear in a method, and thus there are only a fixed number of meet
expressions.

?subclassible(Y)
Target: endow X
Intention: Superclass Y of X can be subclassed.

?class(Y)
Target: endow X
Intention: Superclass Y of X should be a non-interface
class.

?interface(Y)
Target: endow X
Intention: Superinterface Y of X should be an interface
class.

?class(Y)
Target: resolve YV in X
Intention: Y should be a non-interface class.

?interface(Y)
Target: resolve YV in X
Intention: Y should be an interface class.

?throwable(Y)
Target: endow X ::M(S)
Intention: Relevant to X:M(S), Y is throwable.

?subclass(Y, Z)
Target: endow X ::M(S)
Intention: Both relevant to X:M(S), Y is a subclass of
Z.

?assignment_compatible(Y, Z)
Target: endow X::M(S)
Intention: Both relevant to X:M(S), Y is assignment
compatible with Z.

?invocation_compatible(Y, Z)
Target: endow X ::M(S)
Intention: Both relevant to X:M(S), Y is invocation
compatible with descriptor Z.

7accessible_instancemember(Y, M, S, X, 7)
Target: resolve Y::M(S)in X
Intention: Relevant to X, Z can be used to reference the
member Y::M(S).

?accessible specialmember(Y, M, S, X, Z)
Target: resolve Y:M(S)in X
Intention: Relevant to X, Z can be used to reference the
special member Y ::M (S).

Figure 5: Obligations that may be asserted by verify X

initial theory to account for such change. For example, the
introduction of the following clause will make the subclass
rule work perfectly as before:

subclass(Y, Z; M Zy) :- subclass(Y, Z;),

subclass(Y, Z,).

The above implementation is an infrastructure for the work
in [6]. We are now investigating how to incorporate a proof
linker into a Java-enabled web browser.

5 Rethinking Verification

The modular verification model we propose here invites sev-
eral natural extensions to mobile code verification. Firstly,
since the verifier can be completely detached from the loader
and the linker, it is then possible for the mobile code host-
ing technology (e.g. browser) and the verification technol-
ogy to evolve independently of each other. In the context
of Java applet verification, one may conceive that the ver-
ifier is made into some kind of replaceable module for any



subclassible(’java/lang/0Object’) .
subclassible(C) :-
non_final(C), extends(C, D), subclassible(D).

subclass(C, D) :- extends(C, D).
subclass(C, E) :- extends(C, D), subclass(D, E).

throwable(’ java/lang/Throwable’).
throwable(X) :- subclass(C, ’java/lang/Throwable’).

superinterface(D, C) :- implements(C, D).
superinterface(E, C) :-

implements(C, D), superinterface(E, D).
superinterface(E, C) :-

extends(C, D), superinterface(E, D).

accessible_instance_member(C, M, S, _, _) :-
public_member(C, M, S).

accessible_instance_member(C, M, S, D, I) :-
protected_member(C, M, S), subclass(I, D).

accessible_special_member(C, ’<init>’, D, S, C) :-

accessible_instance_member(C, ’<init>’, D, S, C).

accessible_special_member(C, M, D, C, _) :-—
private_member(C, M, D).

accessible_special_member(C, M, D, S, R) :-
subclass(S, C),
accessible_instance_member(C, M, D, S, R).

assignment_compatible(X, X).
assignment_compatible(S, T) :- subclass(S, T).
assignment_compatible(S, T) :- superinterface(T, S).

invocation_compatible(A, B) :-
assignment_compatible (A, B).

Figure 6: The Initial Theory

browser equipped with a proof linker. Third party vendors
can specialize in producing highly secure verifier modules,
while browser vendors can concentrate their efforts on pro-
ducing more usable browsers. For example, a user may use
Netscape Navigator with a Java verifier produced by Syman-
tec. We believe this business model may yield higher quality
mobile code hosting environments.

Secondly, modularization makes it feasible for verifica-
tion to be performed remotely. The example in section 4
only requires that the verify primitive correctly generates
all commitments and obligations. It does not specify how
such commitments and obligations are generated. There-
fore, a remote Java verifier can analyze a classfile, generate
the corresponding commitments and obligations, and digi-
tally sign the entire package. Upon receiving the package,
a browser can perform a verify primitive that (1) validates
the signature of the package, and (2) processes the commit-
ments and obligations as if they are generated locally. Had
we not modularized verification, remote verification would
not be possible because the verification of one classfile will
require the knowledge of other classfiles, which may not be
accessible at the remote verifier’s site. Combining modu-
lar verification with key-management technologies, and by
employing a physically secure coprocessor to perform verifi-
cation, Devanbu, Fong, and Stubblebine [6] produce a dis-
tributed mobile code verification architecture that has var-
ious security-related and configuration-management-related
benefits. In this way, our work renders verification a service
that can be offered by any third-party verification service
provider.

Thirdly, modularization of verification provides interop-
erability among various verification protocols. A verification
protocol specifies where and how verification is performed.
There are at least three known verification protocols in the
mobile code literature:

1. Proof-on-demand: The existing implementations of
Java bytecode verification exemplify this protocol. Ver-
ification is performed dynamically whenever a classfile
is linked into the run-time environment. The protocol
introduces link-time overhead, but it allows dynamically-
generated code to be verified properly.

2. Proof-carrying code [14]: Verification is performed
remotely. A correctness proof is attached to a code
module when it is shipped. Upon arrival at the ex-
ecution site, the correctness proof is checked before
execution is granted. Since proof checking is usually
easier than proof generation, this protocol introduces
less link-time overhead than proof-on-demand. Also,
since proof generation is now performed once and for
all by the developer of the code, one can afford to
consider difficult-to-prove safety properties, including
those that have to be verified with human assistance.

3. Proof delegation [6]: Code is passed to a trusted
program analyzer, which certifies the correctness of
the code, and then digitally signs it. Upon arrival at
the execution site, verification is replaced by signature
checking. This protocol is potentially the most effi-
cient when the safety properties can be mechanically

established.

Since each of these protocols has merit, it may be worth-
while to avoid premature commitment to a single one. For
example, a mobile program may consist of some untrusted
modules, some proof-carrying modules, and some remotely-
certified modules, each from a different source. To make



this possible, we need to be able to combine the results of
verification produced by multiple protocols. Proof linking
provides an infrastructure for such interoperability.

6 Discussion and Related Work

Neither dynamic linking nor modular verification is new:
dynamic linking is common in operating systems like UNIX
and Windows; the notion of local certifiability is well known
in software engineering [19]; composability of security fea-
tures was studied as early as in the 1980’s [11, 12]. Our
main contribution lies in the proposal of an infrastructure
that permits mudular verification in the presence of dynamic
linking. Eliminating interleaving and delocalization, the re-
sulting verifier can be understood and validated independent
of the rest of the run-time system. This reduces the com-
plexity of maintaining the verifier itself. We formalize the
sufficient conditions under which loading, verification, and
linking will interact correctly in this architecture. We apply
the above to articulate the correctness of dynamic linking
in an instantiation of Java bytecode verification. Moreover,
our modularization leads naturally to several potential ex-
tensions of mobile code verification.

Dean pioneered the study of type-safe dynamic linking
[4]. In order to make sure that the reflection facilities of Java
do not produce type confusion, he formalized an approxima-
tion to the linking behavior of Sun’s implementation of the
Java run-time environment. He then formulates a sufficient
condition, called consistent extension (of type environment),
for type-safe linking. He established the correctness of his
approximation using the PVS theorem prover [16]. While he
focusses mainly on the articulartion of linking correctness in
the presence of reflection facilities, we attempt to provide a
modular architecture upon which one can dynamically link
together results from static analysis of different compilation
units. In our work, consistency of type extension is achieved
by the monotonicity condition.

Cardelli [1] proposes a formal model for type-safe (static)
linking in a simply-typed lambda calculus. In his model,
program fragments to be linked to gether is called a linkset.
Linking is modelled as a series of substitutions that preserve
type safety invariants. Our verify primitive is equivalent to
his intra-checking, while our resolve primitive could be seen
as an incremental version of his inter-checking. The correct-
ness of his model is also dependent (though implicitly) on
some specific ordering of substitution steps [1, Lemma 3-3
& Section 6]. Extension of this framework to incremental
dynamic linking would be an interesting area for further
work.

One may argue that, by making the verifier module re-
placeable, we are simply transferring the point of attack to
the proof linker. We believe that this does not create a
problem because (1) the correctness of proof linking can be
established fairly mechanically, (2) the architecture of the
proof linker is extremely simple (in our Java example, even
a pure Prolog interpreter will do the job), and (3) the under-
lying technology, deductive query evaluation, is extremely
well-studied in fields like proof theory, logic programming,
and database theory; many well-tested implementations are
around.

Although the first application of our framework, Java
bytecode verification, is mainly type checking, we are ex-
ploring the application of our framework to the verification
of other security properties like confidentiality [5, 18] and
integrity [3]. In the long run, we would like to formally char-
acterize the kind of program properties that allow modular

verification in the manner prescribed by this paper.
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