
Capabilities as Alias Control: Secure Cooperation in
Dynamically Extensible Systems

[Extended Abstract]

Philip W. L. Fong Cheng Zhang
Department of Computer Science

University of Regina
Regina, Saskatchewan, Canada S4S 0A2

{pwlfong, zhang20c}@cs.uregina.ca

ABSTRACT
Secure cooperation is the problem of protecting mutually
suspicious code units within the same execution environ-
ment from their potentially malicious peers. A statically
enforceable capability type system is proposed for the JVM
bytecode language to provide fine-grained access control of
shared resources among peer code units. The design of the
type system is inspired by recent advances in alias control
type systems for object-oriented programming languages.
The exercise of access rights and the propagation of ca-
pabilities are given a uniform interpretation as alias cre-
ation events. Each capability type assigns to a reference
a dataflow trajectory, prescribing the set of aliases that is
allowed to be created from the reference. An orthogonal
and complementary type system for controlling object cre-
ation and downcasting is also designed to avoid a class of
capability spoofing attacks. The combined type system suc-
cessfully addresses a number of classical protection problems
recast in a programming language context. This work there-
fore demonstrates the need and the feasibility of a language-
based approach to enforce application-level security among
peer code units.

1. INTRODUCTION
Secure cooperation [35] is the problem of protecting mutu-
ally suspicious code units within the same execution environ-
ment from their potentially malicious peers. Genuine coop-
eration is predicated on the establishment of trust between
collaborating code units, so that access to shared resources
can be precisely controlled. Secure cooperation is therefore
an enabling infrastructure for dynamically extensible soft-
ware systems such as mobile code language environments
[7, 40], scriptable applications, and software systems with
plug-in architectures [5, 13, 33].

1.1 Limitations of Existing Language-Based
Approaches to Secure Cooperation

The language-based approach has become a leading secu-
rity paradigm in the development of dynamically extensible
software systems. Strongly typed language environments
supporting dynamic loading of code units, such as the JVM
[29] and the CLR [11], are prototypical platforms for host-
ing dynamically extensible applications. Language-based
protection mechanisms such as stack inspection [44, 20],
SASI/IRM [41, 42], Model-Carrying Code [38], and history-
based access control [12, 1, 17] take the perspective of a
software system protecting its resources and privileged ser-
vices against untrusted software extensions. Essential as it
is for infrastructure protection, such a bipartite perspective
does not address the need of protection for peer code units
that are suspicious of each other.

A bipartite, or more generally, a hierarchical perspective of
secure cooperation sees the underlying software system as
a collection of application layers. The emphasis is on the
protection of an application layer from being abused by an
adjacent client layer. In the context of extensible systems,
such a perspective protects an application core from un-
trusted software extensions. Yet, the protection interest of
an extensible system developer may go further than what a
hierarchical perspective can offer. For instance, the devel-
oper may wish to impose specific communication protocols
among collaborating software extensions. Likewise, the de-
veloper may need to promote structure and resource sharing
between mutually suspicious software extensions by assur-
ing them that abuse will not occur. Existing literature on
language-based protection is relatively silent on this need of
peer-to-peer security.

1.2 A New Approach: Capabilities as Alias
Control

In this work, a novel capability type system is proposed for
the JVM bytecode language. The design goal is to pro-
vide a fine-grained access control mechanism for capturing
application-level security. Specifically, every object refer-
ence can be protected by a capability type, thereby allowing
peer code units to precisely control the way shared struc-
tures are accessed. The caller of a method may control the
way arguments are to be accessed by the callee, and, like-

interface Prisoner {

void send(Prisoner p, Guard g);

void receive(Mail m);

}

interface Guard {

void deliver(Mail m, Prisoner p);

}

public final class Mail {

public Mail(string m) { msg = m; }

public string read() { return msg; }

private string msg;

}

Figure 1: The Prisoner Mail System Problem

wise, the callee may control the way the return value is to be
accessed by the caller. When coupled with subtyping rules,
an application core may impose communication patterns on
collaborating concrete classes through the definition of ab-
stract classes (or interfaces) in terms of capability types.

Inspired by recent advances in alias control type systems for
object-oriented programming languages [24, 31, 3, 34, 8, 43,
6, 2], our type system offers a fresh interpretation of the no-
tion of capability, which is traditionally understood as a ref-
erence plus a set of access rights [10, 9]. In a language-based
environment, method invocation and field setting inevitably
create aliases. Controlling alias creation therefore provides
an effective means for restricting access to class members.
Such an insight allows us to reinterpret a capability as a
reference plus a dataflow trajectory, prescribing the set of
aliases that is allowed to be created from the reference. This
reinterpretation produces an extremely fine-grained access
control mechanism for language-based systems. An orthog-
onal and complementary type system for controlling object
creation and downcasting is also designed to avoid a class of
capability spoofing attacks. The combined type system suc-
cessfully addresses a number of classical protection problems
[9] recast in a programming language context.

2. THE PRISONER MAIL SYSTEM PROB-
LEM

We motivate the discussion of our capability type system
by examining a toy problem originally proposed in an early
work of Ambler and Hoch [4] for studying protection in pro-
gramming languages. This so called Prison Mail System
Problem is simplified and recast here in an object-oriented
flavor without diluting the essense of its original challenges.
The protection challenges presented by the revised toy prob-
lem are then categorized according to a scheme inspired by
the seminal paper of Cohen and Jefferson [9].

In the Prisoner Mail System are three types of objects —
Prisoners, Guards and Mails (Figure 1).

1. Instances of the Prisoner interface are forbidden from
direct communication with each other. All message

Capability Type Annotations

Frontend javac Backend
Java
Source

Annotated
Classfile

Java

Source

Classfile

Figure 2: Processing of Type Annotations

exchanges must be mediated by the Prison Mail Sys-
tem.

2. Instances of the Guard interface are responsible for de-
livering messages.

3. Instances of the Mail class are message carriers.

Classes implementing the Prisoner and Guard interfaces are
dynamically loaded software extensions, and their integrity
are not to be trusted. While the Guards are ever suspicious
of conspiracies, the Prisoners resent any form of censor-
ship. To their mutual agreement, the Prison Mail System
application core imposes the following mail delivery proto-
col: The application core randomizes the schedule of mail
delivery and the assignment of Guard responsible for deliv-
ery. It schedules a delivery by invoking the send method
of a Prisoner object, specifying which fellow Prisoner the
sender is allowed to correspond with, and which Guard is to
be responsible for the delivery. The Prisoner.send method
will then create a Mail object, and pass it along with the
addressee to the deliver method of the assigned Guard.
Guard.deliver will in turn invoke the receive method of
the receiving Prisoner, passing the Mail object as the ar-
gument. This completes one mail delivery.

The following security constraints must be enforced.

1. Safe Invocation. Prisoners want to be assured that
Mail messages passed to the deliver method are not
read by the mediating Guard objects.

2. Capability Amplification. When a Mail is deliv-
ered to a receiving Prisoner, the previous restriction
on read access should be lifted so that the embedded
message can be consumed.

3. Limiting Propagation of Capability. Mail objects
that are in transit must not be leaked to any party
other than a Prisoner.

4. Mediated Communication. The sending Prisoner

may not contact the receiving Prisoner directly. All
communications must be mediated by the assigned
Guard.

5. Flexible Control of Capability Storing. The send-
ing Prisoner may not store away the addressee refer-
ence for future use. The receiving Prisoner, however,
may save the Mail for future reading.

As we shall see in Section 4, all these protection problems
are fully addressed by our capability type system.

3. A CAPABILITY TYPE SYSTEM
This section provides a high-level overview of our capabil-
ity type system. The type system is intended to be used
for annotating Java source files. Type annotations will be
extracted by the compiler frontend, and subsequently in-
jected into the classfiles generated by the compiler (Figure
2). Type checking, inter- and intra-modular, will be con-
ducted by the JVM at link time, against classfiles, at the
bytecode level. This is to ensure dynamic linking is type-
safe with respect to our capability type system. The follow-
ing description therefore focuses on typing Java classfiles at
the bytecode instruction level. Syntactic issues such as the
concrete syntax for annotating Java source programs with
capability types, or the encoding scheme for embedding type
annotations in classfiles, do not concern us in this paper.

3.1 An Intuitive Description
We begin the discussion of our capability type system with
an informal account that highlights the intuitions behind
the technicalities that follow.

Capability Types. A reference to an instance of class A

offers indiscriminate access to the public interface of the ob-
ject. When an object reference is passed from one context to
another (i.e., argument passing or method value returning),
the owner of the reference may want to selectively disable
certain operations from being applied to the object in the
receiver context (e.g., the sending Prisoner desires that the
deliver method does not invoke the read method on the
Mail argument). Essentially, the owner may want to present
an alternative view of class A that is more restrictive than its
public interface. More than that, depending on the context,
different views may need to be presented for different re-
ceivers (e.g., mediating Guard vs receiving Prisoner). Such
a need is traditionally filled by the use of capabilities. A
capability is a reference plus a set of access rights, prescrib-
ing what operations can be performed on the underlying
reference. In the context of a language-based environment,
one may model capabilities with a type system by assigning
to each object reference a type that prescribes access rights.
Well-typed programs are those that only exercise rights per-
mitted by the typing discipline. Our capability type system
is an instance of this general approach.

The Priority of Method Invocation. In a language-
based extensible system, the prime liability is code execu-
tion. Undisciplined execution of untrusted code is to be
avoided. In the context of Java, this boils down to con-
trolling method invocation. The chief goal of our capability
type system is therefore the regulation of method invocation
pattern.

Capabilities for Argument Passing. The core insight
behind our type system is that method invocation coincides
with alias creation events. Specifically, when a method is ap-
plied to its arguments, aliases of the arguments are created
through the binding of actual arguments to formal parame-
ters. Controlling the creation of aliases caused by argument
binding effectively restricts method invocation. A capability
can therefore be interpreted as a reference plus a set of alias
control constraints, prescribing the argument binding events
that may occur to the underlying reference. A capability
type is thus a compact specification of such constraints.

A, B ∈ JavaReferenceTypes

M ∈ JavaMethodTypes

F ∈ JavaFieldTypes

m
A,M ∈ JavaMethodSignatures

A,M

f
A,F ∈ JavaFieldSignatures

A,F

M ::= (A1, . . . , Ak)B

| (A1, . . . , Ak)void

F ::= A

Figure 3: Abstract Syntax for Java Types

Controlling Capability Propagation. In our type sys-
tem, a capability type constrains not only a single aliasing
event, but rather it specifies the set of all future aliasing
events that may occur to a reference. Specifically, every
capability type corresponds to some finite automaton, spec-
ifying the set of all call chains the reference may traverse.
This effectively outlines a dataflow trajectory for the object
reference, and provides precise control on the way a capa-
bility may be propagated.

Controlling Capability Sharing. A capability type may
also specify if the underlying reference can be stored into
fields, which again coincides with an alias creation event.
Such a feature may be used to control if a capability can be
shared after it is passed as an argument to a method. This
in turns constrains structure sharing.

3.2 Assumptions and Notations
Figure 3 defines syntactic categories related to the standard
Java type system. They will be assumed in the following
discussion. In this work, a Java reference type (A, B) is ei-
ther a class or interface type in Java (e.g., Mail, Prisoner).
We assume in the following that the types of fields, for-
mal parameters and method return values are all reference
types; primitive (e.g., int) and array types (e.g., Mail[])
are ignored for notational economy. Similarly, although our
scheme applies equally well to static methods and fields, we
consider only instance methods and fields in this paper. A
Java method type (M) is a list of parameter types, not in-
cluding that of the implicit formal parameter this, plus a
return type (e.g., (Prisoner, Guard)void). A Java field type
(F) is simply a Java reference type (e.g., string). A Java
method signature mA,M with Java method type M is de-
fined for Java reference type A if a method with that signa-
ture is declared in A or one of its supertypes. For example,
“void send(Prisoner, Guard)” is a method signature de-
fined for Java reference type Prisoner. Its Java method
type is (Prisoner, Guard)void. A Java field signature fA,F

with Java field type F is defined for a Java reference type
A if a field with this signature is declared in A or one of its
supertypes. For example, “string msg” is a field signature
defined for the Java reference type Mail, and has a Java field
type string.

3.3 Capability Types

CA ∈ PrimitiveCapabilities
A

T A
,UA

,VA ∈ CapabilityTypes
A

XA ∈ CapabilityTypeVariables
A

T A ::= >A | ⊥A | CB → T A | [T A] | T A
1 u T A

2 | XA

Figure 4: Abstract Syntax for Capability Types

A capability type T A defines a set of sequences of aliasing
events that may occur to an underlying Java reference type
A. The abstract syntax of capability types is given in Figure
4, the exposition of which is given below. A capability type
is constructed from primitive capabilities and capbility type
constructors.

3.3.1 Primitive Capabilities
A primitive capability CA for a Java reference type A is a
named subset of method signatures defined for Java refer-
ence type A. A primitive capability CA specifies the signa-
tures mA,M of a set of methods that can be applied to an
object reference (possibly through virtual method invoca-
tion). In short, it denotes a set of argument binding events.
Primitive capabilities are not capability types.

Example. The following set named READ defines a primi-
tive capability for the Mail class.

READ = {string read()}

It represents the event of passing an object reference as an
argument to the read method declared in Mail. Since the
method has only this as its formal parameter, the primi-
tive capability represents the right to invoke read on a Mail

reference.

3.3.2 Capability Type Constructors
A capability type can be built by recursively applying the
following type constructor.

Top. Top (>) is the most restrictive capability type. No
aliasing of the underlying object reference is permitted.

Bottom. Bottom (⊥) is the least restrictive capability type.
Arbitrary aliasing is permitted of the underlying object ref-
erence.

Propagation. If CB is a primitive capability for some Java
reference type B, and T A is a capability type for Java ref-
erence type A, then the propagation type CB → T A is a
capability type for Java reference type A. Intuitively, one
may read CB → T A as “grant T A to CB”, meaning that the
underlying object reference can be passed as an argument
to methods with signatures belonging to primitive capability
CB . Moreover, the result of binding the argument reference
to the corresponding formal parameter is that the reference
will acquire capability type T A inside the body of the in-
voked method. Note that the propagation type also applies
to the binding of a reference to the formal parameter this

of an instance method.
T

[.] *

READ
R

Figure 5: LTS for capability type R

Example. A Mail reference with capability type

READ → ⊥

can be passed to the formal parameter this of the read

method. In short, the Mail reference is readable. Inside the
read method, the this parameter can be accessed without
restriction (⊥).

Sharing. If T A is a capability type for Java reference type
A, then the sharing type [T A] is also a capability type for
Java reference type A. Intuitively, an object reference with
capability type [T A] can be stored into a field of Java ref-
erence type A. Moreover, the stored reference will acquire
the capability type T A.

Example. A Mail reference with the capability type

[READ → ⊥]

can be saved into a field and subsequently retrieved for read-
ing.

Choice. If T A
1 and T A

2 are capability types for Java refer-
ence type A, then the choice type T A

1 uT A
2 is also a capability

type for Java reference type A. Intuitively, the resulting ca-
pability denotes the right to exercise either T A

1 or T A
2 , but

not both. The u operator is commutative, associative, and
idempotent.

Example. A Mail reference with the capability type

(READ → ⊥) u [READ → ⊥]

can either be read rightaway, or be saved into a field for
future reading.

Abstraction. As we shall see below, recusive definition of
capability types is supported. This feature requires the use
of type variables to name capability types. An occurrence
of a type variable XA names the capability type that defines
the type variable. With recursive definitions, every capabil-
ity type in fact specifies a labelled transition system (LTS)
[14], each transition of which is labelled by either a primitive
capability CB or a sharing type constructor [·].

Example. A Mail reference with a capability type satisfying
the following recursive definition

R = (READ → ⊥) u [R]

can be read rightaway, or be saved into a field for both future
reading and further sharing. The LTS for this capability
type is shown in Figure 5.

3.3.3 Subtyping
Subtyping permits the binding of more capable object refer-
ences to variable names with less capable types. Formally,
given capability types T A1

1 and T A2

2 , T A1

1 is a subtype of

MA,M ∈ MethodAnnotations
A,M

FF ∈ FieldAnnotations
F

MA0,M ::= T A0

0 (T A1

1 , . . . , T
Ak

k)T B if M = (A1, . . . , Ak)B

| T A0

0 (T A1

1 , . . . , T
Ak

k)void if M = (A1, . . . , Ak)void

FF ::= T A if F = A

Figure 6: Abstract Syntax for Capability Types of

Reference Type Members

PA ∈ PrimitiveCapabilityDefinitions
A

QA ∈ CapabilityTypeVariableDefinitions
A

RA ∈ CapabilityTypeAnnotations
A

SA ∈ CapabilityTypeInterfaces
A

SA ::= class A { PA
1 . . .PA

m QA
1 . . .QA

n RA
1 . . .RA

k }

PA ::= capability CA = {mA,M1

1 , . . . , m
A,Mk

k }

QA ::= define XA = T A

RA ::= method m
A,M : MA,M

| field f
A,F : FF

Figure 7: Abstract Syntax for Capability Type In-

terfaces

T A2

2 , denoted T A1

1 <: T A2

2 , if (1) the Java reference type A1

is a subtype of the Java reference type A2, and (2) there is

a homomorphism from the LTS represented by T A2

2 to the

LTS represented by T A1

1 . As usual, the subtyping relation
(<:) is reflexive and transitive.

3.4 Typing Members of Reference Types
The members (i.e., fields or methods) of a Java reference
type can be typed in our capability type system. The ab-
stract syntax for capability types for reference type members
is given in Figure 6. The capability annotation for a method
defined for Java reference type A0 with Java method type
M = (A1, . . . , Ak)B is of the form T A0

0 (T A1

1 , . . . , T Ak

k)T B ,

where T A0

0 is the capability type of this, T Ai

i the capability
type of formal parameter i, and T B the capability type of
the return value. The capability annotation for a field of
Java reference type F = A is simply a capabilitiy type T A.
Subtyping of method types follows the usual contravariant
rule (i.e., UA0

0 (UA1

1 , . . . ,U
Ak

k)UA <: VB0

0 (VB1

1 , . . . ,V
Bk

k)VB

if VBi

i <: UAi

i and UA <: VB).

3.5 Capability Type Interfaces
Every Java class (or interface) is endowed with a capabil-
ity type interface, the abstract syntax of which is provided
in Figures 7. A capability type interface SA for a class
(or interface) A is composed of three sections, namely, (1)

primitive capability definitions, (2) capability type variable
definitions, and (3) capability type annotations.

Primitive capability definitions. Every primitive capa-
bility definition associates a set of method signatures de-
fined for Java reference type A to a primitive capability CA.
Primitive capabilities defined for the supertypes of A are
implicitly inherited by A.

Capability type variable definitions. Each definition
binds a capability type T A to a type variable XA. (Mutu-
ally) recusive definition of capability type variables is sup-
ported, so long as the recursive definition is properly guarded
[14]. Variables defined in the capability type interfaces of
supertypes are implicitly inherited.

Capability type annotations. A capability type annota-
tion for a field fA,F assigns a capability type T F to the field.
The underlying Java type of the field must match the un-
derlying reference type of the capability type. A capability
type annotation for method mA.M assigns a capability type
to every formal parameter and also the return value (in the
case of non-void method). Again, the underlying Java type
of the annotation must match the Java type of the method.

Method overriding must follow the usual subtyping require-
ment. That is, if the annotations of the overriding method
and the overridden method are MA1,M

1 and MA2,M
2 respec-

tively, then MA1,M
1 <: MA2,M

2 .

Methods that are not annotated explicitly inherit their an-
notations from supertypes, or else, if no such annotation
is available, then a default annotation is assumed. Specifi-
cally, the default annotation for a field is simply ⊥, where
the default annotation for a method assigns ⊥ uniformly to
all formal parameters and the return value.

3.6 Type Checking
Type rules must be in place for checking if the implementa-
tion of a Java reference type conforms to a given capability
type interface. Our type system controls the creation of
aliases caused by passing arguments and setting fields. Ac-
cordingly, type rules should be in place for bytecode instruc-
tions putfield, getfield, putstatic, getstatic, invokevirtual, in-
vokespecial, invokeinterface and invokestatic. We give an
informal account of the type rules for putfield and invoke-
virtual. The rest are analogous1.

putfield fA,F

Operand Stack:

. . . , o, v −→ . . .

Operation: Store the value v into the field fA,F of
object instance o.

Type Constraints: The capability type of v is UA

and fA,F is annotated with capability type VB

then it must be true that UA <: [VB].

1The treatment of invokespecial is in fact nontrivial, for it
is the instruction by which class constructors and private
methods are invoked. Details can be found in an upcoming
technical report.

class Mail {
capability READ = { string read() }
method Mail(string) : ⊥ (⊥) void

method string read() : ⊥ () ⊥
field string msg : ⊥

}

class Prisoner {
capability SEND = { void send(Prisoner, Guard) }
capability RECV = { void receive(Mail) }
method void send(Prisoner, Guard)

: ⊥ (DLVR → RECV → ⊥, DLVR → ⊥) void

method void receive(Mail)

: ⊥ ([READ → ⊥]) void

}

class Guard {
capability DLVR = { void deliver(Mail, Prisoner) }
method void deliver(Mail, Prisoner)

: ⊥ (RECV → [READ → ⊥], RECV → ⊥) void

}

Figure 8: Solution to the Prison Mail System Prob-

lem

invokevirtual mA,M

Operand Stack:

. . . , o, a1, a2, . . . , ak −→ . . . , v

Operation: Invoke instance method mA,M , with ar-
guments a1, a2, . . . , ak, on object instance o. Any
return value v is pushed into the operand stack.

Type Constraints: Suppose that the capability types
of o, a1, . . . , ak and v are UA0

0 , UA1

1 , . . . , UAk

k

and U
Ak+1

k+1
respectively, and that mA,M has an-

notation VB0

0 (VB1

1 , . . . ,VBk

k)V
Bk+1

k+1
, then it must

be the case that UAi

i <: {mA,M} → VBi

i for

0 ≤ i ≤ k, and V
Bk+1

k+1
<: U

Ak+1

k+1
.

4. SOLVING PROTECTION PROBLEMS
In this section, we will look at how the above capability
type system may be applied to address a number of classi-
cal protection problems recast in the programming language
context. According to [9], “a protection problem is simply a
description of some class of restricted behaviors. A protec-
tion problem can be solved in a protection system if the sys-
tem provides some set of mechanisms which, when invoked,
guarantee that the behavior of the system will be appropri-
ately restricted.” We present a solution to the Prison Mail
System Problem, and discuss how the solution addresses the
five protection problems highlighted in Section 2.

Our solution to the Prison Mail System Problem consists of
the capability type interfaces for Mail, Prisoner and Guard

as presented in Figure 8.

Safe Invocation. The right to access the Mail.read is
captured in the primitive capability READ. The Mail pa-
rameter of Guard.deliver is not granted this right, because

its capability annotation is RECV → [READ → ⊥], mean-
ing that the Mail argument received by Guard.deliver may
only be passed to the Prisoner.receive method. Guard.de-
liver is therefore forbidden to read the content of Mail.

Capability Amplification. When Guard.deliver passes
the Mail reference to Prisoner.receive, capability amplifi-
cation occurs. Specifically, as an argument of Prisoner.re-
ceive, the Mail reference acquires the capability type
[READ → ⊥], which allows the reference to be stored and
subsequently be used for accessing Mail.read. The Mail

message can therefore be consumed by the receiving Pri-

soner.

Limiting Propagation of Capability. Since the Mail

argument of Guard.deliver has capability type RECV →
[READ → ⊥], propagation of the reference to other Guard

is not permitted.

Mediated Communication. When the Prisoner.send

method is invoked by the application core, it receives the
identity of the addressee as a Prisoner argument. This
argument has capability type DLVR → RECV → ⊥, and
as such it can only be passed to Guard.deliver and sub-
sequently to Prisoner.receive. The sending Prisoner is
therefore disallowed from invoking Prisoner.receive di-
rectly. Mediation through Guard.deliver is mandatory.

Flexible Control of Capability Storing. Notice also
that, having capability type DLVR → RECV → ⊥, the
Prisoner argument received by Prisoner.send cannot be
stored into a field. Access to the addressee is therefore tran-
sient. In contrary, the Mail argument passed to Prison-

er.receive has capability type [READ → ⊥], and as such
it can be stored by the receiving Prisoner for future con-
sumption.

In summary, our capability type system is expressive enough
to address all the protection problems exemplified in the
Prison Mail System2.

5. PREVENTING CAPABILITY SPOOFING
The above capability type system does not prevent a class
of capability spoofing attacks. For instance, a Guard object
may create a collaborating Prisoner who impersonates the
receiving Prisoner, and subsequently leaks a readable refer-
ence of Mail to the malicious Guard. Downcasting may also
be exploited for the same purpose. Capability spoofing may
also be launched indirectly through the invocation of static
methods or exposing access to static fields. To prevent ca-
pability spoofing, an orthogonal type system for controlling
object creation and downcasting is designed to complement
our capability type system. Details of the mentioned at-
tack and this complementary type system will be given in
an upcoming technical report. The main ideas are outlined
below.

5.1 Subsystem Annotations
2Due to space constraints, we are not able to demonstrate
how the choice operator (u) can be employed to solve the
Confused Deputy problem [22]. Details can be found in an
upcoming technical report.

The Java reference type hierarchy is decomposed into a tree
of subsystems. Every Java reference type is owned by a
unique subsystem. A Java reference type A is a member of a
subsystem S if A is owned by S or a descendant subsystem of
S. System classes such as Object and String are owned by
the root subsystem. The following restrictions are imposed.

Subtyping. If a Java reference type A is a subtype of an-
other Java reference type B, and B is owned by sub-
system S, then A must be a member of S.

Static members access. A static member declared in Java
reference type B may be accessed from a Java refer-
ence type A only if B is owned by a subsystem of which
A is a member.

Object instantiation. A Java class A may create an in-
stance of another Java class B only if B is owned by a
subsystem of which A is a member.

Downcasting. Downcasting of an object reference to Java
reference type B can be performed in a Java class A

only if B is owned by a subsystem of which A is a
member.

Enforcing these restrictions involves the annotation of class-
files with subsystem ownership information, and the spec-
ification of type rules for JVM bytecode instructions new,
checkcast, instanceof, getstatic, putstatic and invokestatic,
both of which are straightforward.

5.2 The Prison Mail System Revisited
Subsystem annotations can be applied to avoid capability
spoofing in the Prison Mail System application. Specifi-
cally, three subsystems are defined: AppCore, PrisonerSys
and GuardSys. The subsystems PrisonerSys and GuardSys
are children of the AppCore subsystem, which in turn is
a child of the root subsystem. The Prisoner and Guard

interfaces are owned by the PrisonerSys and GuardSys sub-
systems respectively, while the Mail class is owned by sub-
system AppCore. Because PrisonerSys and GuardSys are
sibling subsystems, instances of Guard are not permitted to
create or downcast instances of Prisoner, and vice versa.
This effectively removes the possibility of capability spoof-
ing.

There is, however, one subtlety. How can Java code owned
by AppCore creates instances of Prisoner and Guard in the
first place? As in any extensible Java application, software
extensions are always loaded and instantiated by the Java
Reflection API, which is accessible only to trusted classes
(e.g., the application core), and is not accessible to untrusted
code (e.g., dynamically loaded extensions).

6. IMPLEMENTING CAPABILITY TYPES
This section presents an implementation strategy we plan to
undertake to realize our capability type system. The goal of
this section is to convince readers that such an implementa-
tion is feasible.

Frontend. The frontend component in Figure 2, which
extracts capability type interfaces from Java source files,

can be implemented in the framework of the javadoc tool of
the Java SDK. Custom doclets and taglets will be designed,
so that capability type interfaces can be embedded in Java
source files as comments.

Backend. The Prelude library [15] is a set of C functions
for preprocessing Java classfiles. It can be employed to build
the backend component of Figure 2 for injecting capability
type annotations into Java classfiles.

Link-time Typechecker. The Aegis VM [15] is an open
source JVM supporting a Pluggable Verification Module ar-
chitecture [16, 18]. Static analyzers can be incorporated
into the dynamic linking process of the Aegis VM with
ease. Intrachecking can be performed with a typical iter-
ative dataflow analysis algorithm, while interchecking can
be performed in the framework of proof linking [19, 18].
Prior experience [16, 18] with employing the Pluggable Ver-
ification Module architecture to implement the JAC type
system [27] demonstrates the feasbility of such an approach.
We do however anticipate a nontrivial technical challenge:
checking for subtyping of capability types amounts to solv-
ing a subgraph isomorphism problem. Without the support
of empirical data, one cannot be sure of how intensive such
computation is in practice. An interesting approach to ad-
dress the problem is to adopt the spirit of Proof-Carrying
Code [33, 32], and request the code producer (i.e., the back-
end) to precompute the homomorphisms involved in all sub-
typing checks.

7. RELATED WORK
Secure cooperation [35] and its variations such as the Mutual
Suspicion Problem [37], the Confused Deputy [22], the Safe
Invocation Problem [35], and Layered Protection [18] have
been studied in the security literature.

The limitations of various language-based protection mech-
anisms such as stack inspection, execution monitoring and
code rewriting have been formally studied in recent years
[36, 28, 21, 20, 17].

The notion of capabilities was first proposed by Dennis and
Van Horn [10]. An archetypical capability-based operating
system kernel is Hydra [9]. A capability-based security ker-
nel for Java is J-Kernel [25], which is implemented as a class
library, and relies on a combination of bytecode rewriting,
dynamic checks and avoidance of structure sharing to en-
force protection. Our type system is statically enforceable,
and supports secure structure sharing.

Previous type systems for modelling access control are deeply
influenced by stack inspection, and thus usually take a hier-
archical perspective on protection [39, 20, 23]. To the best
knowledge of the authors, our capability type system is the
first of its kind to adopt a peer-to-peer perspective on access
control.

Side effects make it difficult to reason about the behavior of
a program. Alias control type systems [24, 31, 3, 34, 8, 43,
6, 2] were originally proposed to control the proliferation of
aliases in object-oriented programming systems. The intent
is that selective elimination of aliasing reduces the scope of
side effects. Vitek and Bokowski’s work on confined types

[43] is a first attempt of applying alias control to address
security issues. Our work, however, is the first to offer a
uniform reinterpretation of capabilities as alias control.

8. CONCLUDING REMARKS
Summary. We have presented a capability type system
designed for addressing the protection needs of dynamically
extensible software systems. Not only have we proposed a
novel protection mechanism in which an application core can
impose communication protocols among untrusted software
extensions, our capability type system also offers a fresh
reinterpretation of capability in terms of alias control.

Future Work. A number of future directions are suggested
by this work. Firstly, we would like to study the soundness
of our capability type system formally in the framework of
Featherweight Java [26]. Secondly, our capability type sys-
tem can be seen as a lightweight partial specification lan-
guage. We would therefore like to provide tool support for
developers of extensible systems to articulate and validate
capability type interfaces. Thirdly, we would like to employ
our capability type system to demonstrate that there is a
close connection between access control and software archi-
tecture. Our conjecture is that the notion of communication
integrity [30] in software architecture can be understood as
protection problems [9], and thus cross-pollination between
the study of software architecture and that of software se-
curity should be attempted.

9. REFERENCES
[1] Mart́ın Abadi and Cédric Fournet. Access control

based on execution history. In Proceedings of the 10th
Annual Network and Distributed System Security
Symposium, San Diego, California, USA, February
2003.

[2] Jonathan Aldrich, Valentin Kostadinov, and Craig
Chambers. Alias annotations for program
understanding. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 311–330, Seattle, Washington, USA, November
2002.

[3] Paulo Sérgio Almeida. Balloon types: Controlling
sharing of state in data types. In Proceedings of the
11th European Conference for Object-Oriented
Programming, Jyvaskyla, Finland, June 1997.

[4] Allen L. Ambler and Charles G. Hoch. A study of
protection in programming languages. In Proceedings
of an ACM Conference on Language Design for
Reliable Software, pages 25–40, Raleigh, North
Carolina, March 1977.

[5] Brian Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gun Sirer, David Becker, Marc Fiuczynski,
Craig Chambers, and Susan Eggers. Extensibility,
safety and performance in the SPIN operating system.
In Proceedings of the 15th ACM Symposium on
Operating System Principles, pages 267–284, Copper
Mountain, Colorado, December 1995.

[6] John Boyland, James Noble, and William Retert.
Capabilities for sharing: A generalisation of

uniqueness and read-only. In Proceedings of the 15th
European Conference for Object-Oriented
Programming, volume 2072 of Lecture Notes in
Computer Science, pages 2–27, Budapest, Hungary,
June 2001.

[7] Antonio Carzaniga, Gian Pietro Picco, and Giovanni
Vigna. Designing distributed applications with mobile
code paradigms. In Proceedings of the 19th
International Conference on Software Engineering,
pages 22–32, Boston, Massachusetts, May 1997.

[8] David Clarke, John Potter, and James Noble.
Ownership types for flexible alias protection. In
Proceedings of the 13th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications, pages 48–64, Vancouver,
BC, Canada, October 1998.

[9] Ellis Cohen and David Jefferson. Protection in the
Hydra operating system. In Proceedings of the 5th
ACM Symposium on Operating System Principles,
pages 141–160, Austin, Texas, USA, November 1975.

[10] Jack B. Dennis and Earl C. Van Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9(3):143–155, March
1966.

[11] ECMA. Standard ECMA-335: Common Language
Infrastructure (CLI), 2nd edition, December 2002.

[12] Guy Edjlali, Anurag Acharya, and Vipin Chaudhary.
History-based access control for mobile code. In
Proceedings of the 5th ACM Conference on Computer
and Communications Security, pages 38–48, San
Francisco, California, USA, November 1998.

[13] Dawson R. Engler, M. Frans Kaashoek, and
James O’Toole Jr. Exokernel: An operating system
architecture for application-level resource
management. In Proceedings of the 15th ACM
Symposium on Operating System Principles, Copper
Mountain, Colorado, December 1995.

[14] Wan Fokkink. Introduction to Process Algebra.
Springer, 2000.

[15] Philip W. L. Fong. The Aegis VM Project.
http://aegisvm.sourceforge.net.

[16] Philip W. L. Fong. Pluggable verification modules: An
extensible protection mechanism for the JVM.
Technical Report CS 2003-11, Department of
Computer Science, November 2003.

[17] Philip W. L. Fong. Access control by tracking shallow
execution history. In Proceedings of the 2004 IEEE
Symposium on Security and Privacy, Oakland,
California, USA, May 2004.

[18] Philip W. L. Fong. Proof Linking: Modular
Verification Architecture for Mobile Code Systems.
Ph.D. dissertation, School of Computing Science,
Simon Fraser University, January 2004.

[19] Philip W. L. Fong and Robert D. Cameron. Proof
linking: Modular verification of mobile programs in
the presence of lazy, dynamic linking. ACM
Transactions on Software Engineering and
Methodology, 9(4):379–409, October 2000.

[20] Cédric Fournet and Andrew D. Gordon. Stack
inspection: Theory and variants. ACM Transactions
on Programming Languages and Systems,
25(3):360–399, May 2003.

[21] Kevin W. Hamlen, Greg Morrisett, and Fred B.
Schneider. Computability classes for enforcement
mechanisms. Technical Report TR 2003-1908,
Computer Science Department, Cornell University,
August 2003.

[22] Norm Hardy. The confused deputy: or why
capabilities might have been invented. Operating
Systems Review, 22(4):36–38, October 1988.

[23] Tomoyuki Higuchi and Atsushi Ohori. A static type
system for JVM access control. In Proceedings of the
8th ACM SIGPLAN International Conference on
Functional Programming, pages 227–237, Uppsala,
Sweden, 2003.

[24] John Hogg. Islands: Aliasing protection in
object-oriented languages. In Proceedings of the ACM
Conference on Object-oriented Programming, Systems,
Languages, and Applications, pages 271–285, Phoenix,
Arizona, November 1991.

[25] Chris Howblitzel, Chi-Chao Chang, Grzegorz
Czajkowski, Deyu Hu, and Thorsten von Eicken.
Implementing multiple protection domains in java. In
Proceedings of the 1998 USENIX Annual Technical
Conference, New Orleans, Louisiana, USA, June 1998.

[26] Atsushi Igarashi, Benjamin C. Pierce, and Philip
Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. ACM Transactions on Programming
Languages and Systems, 23(3):396–450, May 2001.

[27] Günter Kniesel and Dirk Theisen. JAC — access right
based encapsulation for Java. Software — Practice
and Experience, 31(6):555–576, May 2001.

[28] Jay Ligatti, Lujo Bauer, and David Walker. Edit
automata: Enforcement mechanisms for run-time
security policies. International Journal of Information
Security, 2003. To appear.

[29] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison Wesley, 2nd edition,
1999.

[30] David C. Luckham and James Vera. An event based
architecture definition language. IEEE Transactions
on Software Engineering, 21(9):717–734, September
1995.

[31] Naftaly Minsky. Towards alias-free pointers. In
Proceedings of the 10th European Conference for
Objected Oriented Programming, volume 1098 of
Lecture Notes in Computer Science, pages 189–209,
Linz, Austria, July 1996. Springer.

[32] George C. Necula. Proof-carrying code. In Proceedings
of the 24th ACM Symposium on Principles of
Programming Languages, pages 106–119, Paris,
France, January 1997.

[33] George C. Necula and Peter Lee. Safe kernel
extensions without run-time checking. In Proceedings
of the Second Symposium on Operating System Design
and Implementation (OSDI’96), pages 229–243,
Seattle, Washington, October 1996.

[34] James Noble, Jan Vitek, and John Potter. Flexible
alias protection. In Proceedings of the 12th European
Conference for Object-Oriented Programming, volume
1445 of Lecture Notes in Computer Science, pages
158–185, Brussels, Belgium, July 1998. Springer.

[35] Jonathan A. Rees. A security kernel based on the
lambda-calculus. A. I. Memo 1564, MIT, 1996.

[36] Fred B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security,
3(1):30–50, February 2000.

[37] Michael D. Schroeder. Cooperation of Mutually
Suspicious Subsystems in a Computer Utility. Ph.D.
thesis, Massachusetts Institute of Technology,
September 1972.

[38] R. Sekar, V. N. Venkatakrishnan, Samik Basu,
Sandeep Bhatkar, and Daniel C. DuVarney.
Model-carrying code: A practical approach for safe
execution of untrusted applications. In Proceedings of
the 19th ACM Symposium on Operating Systems
Principles, pages 15–28, Bolton Landing, NY, USA,
October 2003.

[39] Christian Skalka and Scott Smith. Static enforcement
of security with types. In Proceedings of the 5th ACM
SIGPLAN International Conference on Functional
Programming, pages 34–45, Montreal, Québec,
Canada, September 2000.

[40] Tommy Thorn. Programming languages for mobile
code. ACM Computing Surveys, 29(3):213–239,
September 1997.

[41] Úlfar Erlingsson and Fred B. Schneider. SASI
enforcement of security policies: A retrospective. In
Proceedings of the 1999 New Security Paradigms
Workshop, pages 87–95, Caledon Hills, Ontario,
Canada, September 1999.

[42] Úlfar Erlingsson and Fred B. Schneider. IRM
enforcement of Java stack inspection. In Proceedings of
the 2000 IEEE Symposium on Security and Privacy,
pages 246–255, Berkeley, California, USA, May 2000.

[43] Jan Vitek and Boris Bokowski. Confined types in
Java. Software — Practice and Experience,
31(6):507–532, May 2001.

[44] Dan S. Wallach, Andrew W. Appel, and Edward W.
Felten. SAFKASI: a security mechanism for
language-based systems. ACM Transactions on
Software Engineering and Methodology, 9(4):341–378,
October 2000.

