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Abstract. This paper summarizes various formulations of the standard
rough set theory. It demonstrates how those formulations can be adopted
to develop different generalized rough set theories. The relationships be-
tween rough set theory and other theories are discussed.

1 Formulations of Standard Rough Sets

The theory of rough sets can be developed in at least two different manners, the
constructive and algebraic methods [16–20, 25, 29]. The constructive methods
define rough set approximation operators using equivalence relations or their
induced partitions and subsystems; the algebraic methods treat approximation
operators as abstract operators.

1.1 Constructive methods

Suppose U is a finite and nonempty set called the universe. Let E ⊆ U × U be
an equivalence relation on U . The pair apr = (U, E) is called an approximation
space [6, 7]. A few definitions of rough set approximations can be given based on
different representations of an equivalence relation.

An equivalence relation E can be conveniently represented by a mapping
from U to 2U , where 2U is the power set of U . More specifically, the mapping
[·]E is given by:

[x]E = {y ∈ U | xEy}. (1)

The subset [x]E is the equivalence class containing x. The family of all equiva-
lence classes is commonly known as the quotient set and is denoted by U/E =
{[x]E | x ∈ U}. It defines a partition of the universe, namely, a family of pairwise
disjoint subsets whose union is the universe. A new family of subsets, denoted
by σ(U/E), can be obtained from U/E by adding the empty set ∅ and making
it closed under set union, which is a subsystem of 2U . In fact, it is an σ-algebra
of subsets of U and a sub-Boolean algebra of the Boolean algebra (2U ,c ,∩,∪).
Furthermore, σ(U/E) defines uniquely a topological space (U, σ(U/E)), in which
σ(U/E) is the family of all open and closed sets [6].

Under the equivalence relation, we only have a coarsened view of the uni-
verse. Each equivalence class is considered as a whole granule instead of many
individuals [21]. They are considered as the basic or elementary definable, ob-
servable, or measurable subsets of the universe [7, 20]. By the construction of



σ(U/E), it is also reasonable to assume that all subsets in σ(U/E) are definable.
To a large extent, the standard rough set theory deals with the approximation
of any subset of U in terms of definable subsets in σ(U/E).

From the different representations of an equivalence relation, we obtain three
constructive definitions of rough set approximations [17, 19, 21, 27]:

Element based definition:

apr(A) = {x | x ∈ U, [x]E ⊆ A}

= {x | x ∈ U, ∀y ∈ U [xEy =⇒ y ∈ A]},

apr(A) = {x | x ∈ U, [x]E ∩ A 6= ∅}

= {x | x ∈ U, ∃y ∈ U [xEy, y ∈ A]}; (2)

Granule based definition:

apr(A) =
⋃

{[x]E | [x]E ∈ σ(U/E), [x]E ⊆ A},

apr(A) =
⋃

{[x]E | [x]E ∈ σ(U/E), [x]E ∩ A 6= ∅}; (3)

Subsystem based definition:

apr(A) =
⋃

{X | X ∈ σ(U/E), X ⊆ A},

apr(A) =
⋂

{X | X ∈ σ(U/E), A ⊆ X}. (4)

The three equivalent definitions offer different interpretations of rough set ap-
proximations. According to the element based definition, an element x is in the
lower approximation apr(A) of a set A if all its equivalent elements are in A, the
element is in the upper approximation apr(A) if at least one of its equivalent
elements is in A. According to the granule based definition, apr(A) is the union
of equivalence classes which are subsets of A, apr(A) is the union of equivalence
classes which have a nonempty intersection with A. According to the subsystem
based definition, apr(A) is the largest definable set in the subsystem σ(U/E)
that is contained in A, apr(A) is the smallest definable subset in σ(U/E) that
contains the set A.

One may interpret apr, apr : 2U −→ 2U as two unary set-theoretic opera-

tors called approximation operators. The system (2U ,c , apr, apr,∩,∪) is called

a rough set algebra [16]. It is an extension of the set algebra (2U ,c ,∩,∪) with
added operators. The lower and upper approximation operators have the follow-
ing properties:

(i). apr(A) = (apr(Ac))c, apr(A) = (apr(Ac))c.

(ii). apr(U) = U, apr(∅) = ∅,

(iii). apr(∅) = ∅, apr(U) = U,

(iv). apr(A ∩ B) = apr(A) ∩ apr(B), apr(A ∪ B) = apr(A) ∪ apr(B).

Property (i) states that the approximation operators are dual operators with
respect to set complement c. By properties (ii) and (iii), the approximations of



both the universe U and the empty set ∅ are themselves. Property (iv) states
that the lower approximation operator is distributive over set intersection ∩, and
the upper approximation operator is distributive over set union ∪. Additional
properties of approximation operators are summarized below, using the same
labelling system as in modal logic [2, 18, 25, 29]:

(D). apr(A) ⊆ apr(A);

(T). apr(A) ⊆ A, (T′). A ⊆ apr(A);

(B). A ⊆ apr(apr(A)), (B′). apr(apr(A)) ⊆ A;

(4). apr(A) ⊆ apr(apr(A)), (4′). apr(apr(A)) ⊆ apr(A);

(5). apr(A) ⊆ apr(apr(A)), (5′). apr(apr(A)) ⊆ apr(A).

They follow from the definition of approximation operators.
Based on the three definitions, it is possible to investigate the connections

between rough sets and other theories [18]. The element based definition re-
lates approximation operators to the necessity and possibility operators of modal
logic [25]. The granule based definition relates rough sets to granular comput-
ing [21]. The subsystem based definition relates approximation operators to in-
terior and closure operators of topological spaces [12], and closure operators
of closure systems [20]. Furthermore, they can be used to show the connection
between rough set theory and belief functions [11, 26].

1.2 Algebraic methods

Algebraic methods focus on the algebraic system (2U ,c , L, H,∩,∪) without di-
rectly reference to equivalence relations, where L and H are two abstract unary
operators called approximation operators [5, 15, 17]. Additional operators have
been introduced to characterize the approximation operators [4, 15, 18].

The connections between constructive and algebraic methods can be estab-
lished by stating axioms on L and H under which there exists an equivalence
relation producing the same approximation operators [5, 16]. The main result can
be stated as follows [5, 16]. Suppose L and H are a pair of dual unary operators
on 2U . There exists an equivalence relation E on U such that L(A) = apr

E
(A)

and H(A) = aprE(A) if and only if L and H satisfy axioms (iv), (T), (B), and
(4). The equivalence relation is defined by [x]E = H({x}) .

Consider now three additional operators.

Upper approximation distribution: Suppose that property (iv) holds for
approximation operators L and H . For any subset A ⊆ U we have H(A) =⋃

x∈A
H({x}). By setting h(x) = H({x}), we obtain an operator from the uni-

verse to the power set of the universe, namely, h : U −→ 2U . By definition,
this mapping is called a upper approximation distribution, and the upper ap-
proximation can be calculated by H(A) =

⋃
x∈A

h(x). The lower approximation
operator can be defined through duality. In the standard rough set model, the
upper approximation operator is given by h(x) = [x]E .



Basic mapping: The Boolean algebra (2U ,c ,∩,∪) is an atomic Boolean algebra
whose atoms are singleton subsets of U . Let A(2U ) be the set of all atoms. The
atom {x} can be identified with the element x of U . The equivalence relation
induced mapping [·]E can be identified with a basic mapping, ϕ : A(2U ) −→ 2U .
From the element based definition we have [4]:

Atom based definition:

L(A) =
⋃

{a | a ∈ A(2U ), ϕ(a) ⊆ A},

H(A) =
⋃

{a | a ∈ A(2U ), ϕ(a) ∩ A 6= ∅}. (5)

An advantage of this definition is that all entities under consideration are ele-
ments of the power set 2U . Conversely, from approximation operators, we have:

ϕ({x}) = {y | y ∈ U, x ∈ H({y})}. (6)

In the standard rough set model, the basic mapping is given by ϕE({x}) = [x]E ,
which is essentially the same as upper approximation distribution. If an arbitrary
binary relation is used, the observation is no longer true.

Basic set assignment: Suppose a pair of approximation operators satisfy ax-
ioms (i)-(iv). One can define a mapping, m : 2U −→ 2U , called basic set assign-
ment as follows:

m(A) = L(A) −
⋃

B⊂A
L(B). (7)

The basic set assignment satisfies the following axioms:

(m1).
⋃

A⊆U
m(A) = U, (m2). A 6= B =⇒ m(A) ∩ m(B) = ∅.

The approximation operators can be obtained by:

L(A) =
⋃

B⊆A
m(B), H(A) =

⋃
B∩A6=∅m(B). (8)

The connection between basic mapping and basic set assignment is given by:

m(A) = {x | x ∈ U, ϕ({x}) = A}, ϕ({x}) = A, x ∈ m(A). (9)

In the standard rough set model, we have m([x]E) = [x]E for equivalence classes
of E, and m(A) = ∅ for all other subsets of U .

2 Generalized Rough Sets

The theory of rough sets can be generalized in several directions. Within the
set-theoretic framework, generalizations of the element based definition can be
obtained by using non-equivalence binary relations [9, 17, 18, 25, 29], generaliza-
tions of the granule based definition can be obtained by using coverings [9, 14,
19, 21, 30], and generalizations of subsystem based definition can be obtained by
using other subsystems [20, 27]. By the fact that the system (2U ,c ,∩,∪) is a
Boolean algebra, one can generalize rough set theory using other algebraic sys-
tems such as Boolean algebras, lattices, and posets [4, 18, 20]. Subsystem based
definition and algebraic methods are useful for such generalizations.



2.1 Rough set approximations using non-equivalence relations

Let R ⊆ U ×U be a binary relation on the universe, which defines a generalized
approximation space apr = (U, R). Given two elements x, y ∈ U , if xRy, we say
that y is R-related to x, x is a predecessor of y, and y is a successor of x. For an
element x ∈ U , its successor neighborhood is given by [25]:

Rs(x) = {y | y ∈ U, xRy}. (10)

With respect to element based definition, we define a pair of lower and upper
approximations by replacing the equivalence class [x]R with the successor neigh-
borhood Rs(x):

apr
R
(A) = {x | Rs(x) ⊆ A},

aprR(A) = {x | Rs(x) ∩ A 6= ∅}. (11)

The basic mapping is given by ϕ({x}) = Rs(x) and the basic set assignment is
given by m(A) = {x | Rs(x) = A}.

The connection between the constructive and algebraic methods with respect
to non-equivalence relations can be stated as follows [16, 18]. Suppose L and H
are a pair of dual operators satisfying axioms (i)-(iv), there exists a serial, a re-
flexive, a symmetric, a transitive and an Euclidean binary relation, respectively,
on U such that L(A) = apr

R
(A) and H(A) = aprR(A) if and only if L and

H satisfy axioms (D), (T), (B), (4) and (5), respectively. The binary relation is
defined by Rs(x) = {y | x ∈ H({y})}.

2.2 Rough set approximations using coverings

A covering of a universe U is a family of subsets of the universe such that their
union is the universe. By allowing nonempty overlap of two subsets, a covering
is a natural generalization of a partition. The granule based definition can be
used to generalize approximation operators.

Let C be a covering of the universe U . By replacing U/E with C and equiva-
lence classes with subsets in C in the granule based definition, one immediately
obtains a pair of approximation operators [30]. However, they are not a pair
of dual operators. To resolve this problem, one may extend granule based def-
inition in two ways. Either the lower or the upper approximation operator is
extended, and the other one is defined by duality. The results are two pairs of
dual approximation operators [19]:

apr′
C

(A) =
⋃

{X | X ∈ C, X ⊆ A}

= {x | x ∈ U, ∃X ∈ C[x ∈ X, X ⊆ A]},

apr′C(A) = (apr′
C

(Ac))c

= {x | x ∈ U, ∀X ∈ C[x ∈ X =⇒ X ∩ A 6= ∅]},



apr′′
C

(A) = (apr′
C

(Ac))c

= {x | x ∈ U, ∀X ∈ C[x ∈ X =⇒ X ⊆ A]},

apr′′
C

(A) =
⋃

{X | X ∈ C, X ∩ A 6= ∅}

= {x | x ∈ U, ∃X ∈ C[x ∈ X, X ∩ A 6= ∅]}.

In general, the above two approximation operators are different. More specifi-
cally, (apr′

C
, apr′

C
) satisfies axioms (i)-(iii), (T), and (4); (apr′′

C
, apr′′

C
) satisfies

axioms (i)-(iv), and (B).
Given a reflexive binary relation R, the family of successor neighborhoods

induces a covering of the universe denoted by U/R = {Rs(x) | x ∈ U}. Approx-
imation operators defined by using U/R and R are different.

2.3 Rough set approximations using subsystems

In the standard rough set model, the same subsystem is used to define lower
and upper approximation operators. When generalizing the subsystem based
definition, one may use two subsystems, one for the lower approximation operator
and the other for the upper approximation operator.

Rough set approximations in topological spaces

Let (U, O(U)) be a topological space, where O(U) ⊆ 2U is a family of subsets
of U called open sets. The family of open sets contains ∅ and U , and is closed
under union and finite intersection. The family of all closed sets C(U) = {¬X |
X ∈ O(U)} contains ∅ and U , and is closed under intersection and finite union.
A pair of generalized approximation operators can be defined by replacing U/E
with O(U) for lower approximation operator, and U/E with C(U) for upper
approximation operator. In this case, the approximation operators are in fact
the topological interior and closure operators, characterized by axioms (i), (ii),
(iv), (T) and (4).

Rough set approximations in closure systems

A family C(U) of subsets of U is called a closure system if it contains U and is
closed under intersection [3]. By collecting the complements of members of C(U),
we obtain another system O(U) = {¬X | X ∈ C(U)}. According to properties
of C(U), the system O(U) contains the empty set ∅ and is closed under union.
We define a pair of approximation operators in a closure system by replacing
U/E with O(U) for lower approximation operator, and U/E with C(U) for upper
approximation operator. They satisfy axioms (iii), (T) and (4).

Rough set approximations in Boolean algebras, lattices, and Posets

Recall that (2U ,c ,∩,∪) is a Boolean algebra, and σ(U/E) is a sub-Boolean
algebra. One can immediately generalize rough set theory to a Boolean algebra
(B,¬,∧,∨) by using subsystem based definition. In this case, we can replace U
with the maximum element 1, ∅ with the minimum element 0, set complement
c with Boolean algebra complement ¬, set intersection ∩ with meet ∧, and set



union ∪ with join ∨. The resulting algebras is known as Boolean algebras with
added operators [10, 16, 18]. In particular, one can define different subsystems
corresponding to the previously discussed standard rough set model, topological
rough set model, and closure system rough set model [20].

In an atomic Boolean algebra, one can also generalize rough set theory by us-
ing the atom based definition through the basic mapping ϕ. By imposing different
axioms on ϕ, one can derive various Boolean algebras with added operators [4].

One may further generalize rough set theory by using lattices and posets [1,
4, 20]. The crucial point is the design of a subsystem which makes the subsystem
based definition applicable.

3 Concluding Remarks

We discuss research results and directions about generalizing the theory of rough
sets. The theory is developed using both constructive and algebraic methods, and
their connections are established. In the constructive framework, three defini-
tions of approximation operators are examined, the element based, the granule
based, and the subsystem based definitions. The element based definition en-
ables us to generalize the theory with non-equivalence relations. The granule
based definition can be used to generalize the theory with coverings. The sub-
system based definition can be used to generalize the theory in many algebraic
systems. In comparison, algebraic methods are more applicable and can be used
to generalize the theory in a unified manner.

We restrict our discussion to the operator oriented view of rough set the-
ory by treating lower and upper approximation as a pair of unary set-theoretic
operators. There are many other views of the rough set theory [16]. Many im-
portant generalizations of the theory, such as probabilistic and decision theoretic
rough sets [13, 22, 23, 28], and rough membership functions [8, 24], although not
mentioned in this paper, need further investigation.
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