
ECASL : A Model of Rational Agency for Communicating
Agents

Shakil M. Khan
Department of Computer Science

York University
Toronto, ON, Canada M3J 1P3

skhan@cs.yorku.ca

Yves Lespérance
Department of Computer Science

York University
Toronto, ON, Canada M3J 1P3

lesperan@cs.yorku.ca

ABSTRACT
The Cognitive Agent Specification Language (CASL) is a
framework for specifying and verifying complex communi-
cating multiagent systems. In this paper, we develop an ex-
tended version, ECASL, which incorporates a formal model
of means-ends reasoning suitable for a multiagent context.
In particular, we define a simple model of cooperative ability,
give a definition of rational plans, and show how an agent’s
intentions play a role in determining her next actions. This
bridges the gap between intentions to achieve a goal and
intentions to act. We also show that in the absence of inter-
ference, an agent that is able to achieve a goal, intends to
do so, and is acting rationally will eventually achieve it.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Multiagent systems

General Terms
Theory, Design, Verification

Keywords
Agent Theory, Rationality, Intentions, Agent Communica-
tion

1. INTRODUCTION
Most agent theories [1, 13] suffer from a similar problem:

they axiomatize the relation between the different mental
attitudes of the agents and the physical states of the world,
but they do not account for how the agents will achieve
their goals, how they plan and commit to plans. Ideally,
an agent’s intention to achieve a state of affairs in a situa-
tion should drive the agent to intend to execute a plan that
she thinks is rational in that situation. In other words, an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

agent’s future directed intentions should lead her to adopt
rational plans and eventually achieve her intentions.

Another recent thread in agent theory introduces a pro-
cedural component to the framework in an attempt to close
the gap between agents’ intentions to achieve a state of af-
fairs and their intentional actions, as well as to support the
modeling of complex multiagent systems. One example of
this is the Cognitive Agent Specification Language (CASL)
[20, 21], which is a framework for specifying and verifying
complex communicating multiagent systems. However, it is
somewhat restricted in the sense that it requires the modeler
to specify agent behavior explicitly, and the program that
controls the agent’s actions need not be consistent with the
agent’s intentions, or do anything to achieve them.

In this paper, we propose a solution to this problem by
developing an extended version of CASL, ECASL. In par-
ticular, we define rational plans and ability in a multiagent
context, and use these notions to link future and present di-
rected intentions. We introduce a special action, the commit
action, that makes the agent commit to a plan, and define
a meta-controller BehaveRationallyUntil that has the agent
act rationally to achieve a specific goal by choosing and com-
mitting to a rational plan, and carrying it out. Then we
show that given that an agent has an intention, she will act
to achieve it provided that she is able to do so.

The paper is organized as follows: in the next section, we
outline previous work on CASL. In Section 3, we develop a
simple formalization of cooperative ability for agents work-
ing in a multiagent setting. In Section 4, we define rational
plans, relate future and present directed intentions, and dis-
cuss what it means for an agent to behave rationally. We
also state a theorem that links an agent’s intentions and
abilities to the eventual achievement of her intentions.

2. CASL
In CASL [20, 21], agents are viewed as entities with men-

tal states, i.e., knowledge and goals, and the specifier can
define the behavior of the agents in terms of these mental
states. CASL combines a declarative action theory defined
in the situation calculus with a rich programming/process
language, ConGolog [2]. Domain dynamics and agents’ men-
tal states are specified declaratively in the theory, while sys-
tem behavior is specified procedurally in ConGolog.

In CASL, a dynamic domain is represented using an action
theory formulated in the situation calculus [11], a (mostly)
first order language for representing dynamically changing
worlds in which all changes are the result of named actions.

CASL uses a theory that includes the following set of axioms:

• action precondition axioms, one per action,

• successor state axioms (SSA), one per fluent, that en-
code both effect and frame axioms and specify exactly
when the fluent changes [14],

• initial state axioms describing what is true initially
including the mental states of the agents,

• axioms identifying the agent of each action,

• unique name axioms for actions, and

• domain-independent foundational axioms describing the
structure of situations [6].

Within CASL, the behavior of agents is specified using
the notation of the logic programming language ConGolog
[2]. A typical ConGolog program is composed of a sequence
of procedure declarations, followed by a complex action.
Complex actions can be composed using constructs that in-
clude primitive actions (a), waiting for a condition (φ?), se-
quence (δ1; δ2), nondeterministic branch (δ1 | δ2), nondeter-
ministic choice of arguments (πx.δ), conditional branching
(If φ Then δ1 Else δ2 EndIf), while loop (While φ Do σ End-
While), and procedure call (β(−→p)). Intuitively, πx.δ non-
deterministically picks a binding for the variable x and per-
forms the program δ for this binding of x. ConGolog also
supports nondeterministic iteration, concurrent execution
with and without priorities, and interrupts. To deal with
multiagent processes, primitive actions in CASL take the
agent of the action as argument.

The semantics of the ConGolog process description lan-
guage is defined in terms of transitions. Two special predi-
cates Final and Trans are introduced, and are characterized
by defining axioms for each of the above constructs, where
Final(δ, s) means that program δ may legally terminate in
situation s, and where Trans(δ, s, δ′, s′) means that program
δ in situation s may legally execute one step, ending in situ-
ation s′ with program δ′ remaining.1 The overall semantics
of a program is specified by the Do relation:

Do(δ, s, s′)
.
= ∃δ′ · (Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′)).

Do(δ, s, s′) holds if and only if s′ can be reached by per-
forming a sequence of transitions starting with program δ
in s, and the remaining program δ′ may legally terminate
in s′. Here, Trans∗ is the reflexive transitive closure of the
transition relation Trans.

CASL incorporates a branching time temporal logic, where
each situation has a linear past and a branching future. In
this framework, one can write both state formulas and path
formulas. A state formula φ(s) takes a single situation as ar-
gument and is evaluated with respect to that situation. On
the other hand, a path formula ψ(s1, s2) takes two situations
as arguments and is evaluated with respect to the interval
(finite path) [s1, s2]. We often use φ (and ψ) to denote a
formula whose fluents may contain a placeholder constant
now (now and then, resp.) that stands for the situation in
which φ (ψ, resp.) must hold. φ(s) (and ψ(s1, s2)) is the

1Since we have predicates that take programs as arguments,
we need to encode programs as first-order terms as in [2].
For notational simplicity, we suppress this encoding and use
formulae as terms directly.

formula that results from replacing now with s (now and
then with s1 and s2, resp.). Where the intended meaning is
clear, we sometimes suppress the placeholder(s).

CASL allows the specifier to model agents in terms of their
mental states by including operators to specify agents’ in-
formation (i.e., their knowledge), and motivation (i.e., their
goals or intentions). We usually use state formulas within
the scope of knowledge, and path formulas within the scope
of intentions. Following [12, 18], CASL models knowledge
using a possible worlds account adapted to the situation
calculus. K(agt, s′, s) is used to denote that in situation s,
agt thinks that she could be in situation s′. s′ is called a
K-alternative situation for agt in s. Using K, the knowl-
edge or belief of an agent, Know(agt,φ, s), is defined as
∀s′(K(agt, s′, s) ⊃ φ(s′)), i.e. agt knows φ in s if φ holds
in all of agt’s K-accessible situations in s. In CASL, K is
constrained to be reflexive, transitive, and euclidean in the
initial situation to capture the fact that agents’ knowledge is
true, and that agents have positive and negative introspec-
tion. As shown in [18], these constraints then continue to
hold after any sequence of actions since they are preserved
by the successor state axiom for K.

Scherl and Levesque [18] showed how to capture the chang-
es in beliefs of agents that result from actions in the succes-
sor state axiom for K. These include knowledge-producing
actions that can be either binary sensing actions or non-
binary sensing actions. Following [9], the information pro-
vided by a binary sensing action is specified using the predi-
cate SF (a, s), which holds if the action a returns the binary
sensing result 1 in situation s. Similarly for non-binary sens-
ing actions, the term sff(a, s) is used to denote the sensing
value returned by the action.

Lespérance [7] extends the SSA of K in [18] to support
two variants of the inform communicative action, namely
informWhether and informRef. Here, inform(inf, agt, φ),
informWhether(inf, agt, ψ), and informRef(inf, agt, θ)
mean that inf informs agt that φ currently holds, inf informs
agt about the current truth value of ψ, and inf informs agt
of who/what θ is, respectively. The preconditions of inform
are as follows:

Poss(inform(inf, agt, φ), s) ≡ Know(inf, φ, s)

∧ ¬Know(inf,Know(agt,φ, now), s).

In other words, the agent inf can inform agt that φ, iff inf
knows that φ currently holds, and does not believe that agt
currently knows that φ. The preconditions of informWhether
and informRef are similar to that of inform. The SSA for
K is defined as follows:

K(agt, s∗, do(a, s)) ≡

∃s′. [K(agt, s′, s) ∧ s∗ = do(a, s′) ∧ Poss(a, s′) ∧

((BinarySensingAction(a) ∧Agent(a) = agt)

⊃ (SF (a, s′) ≡ SF (a, s))) ∧

((NonBinarySensingAction(a) ∧Agent(a) = agt)

⊃ (sff(a, s′) = sff(a, s))) ∧

∀inf, φ. (a = inform(inf, agt, φ) ⊃ φ(s′)) ∧

∀inf, ψ. (a = informWhether(inf, agt,ψ)

⊃ (ψ(s′) ≡ ψ(s))) ∧

∀inf, θ. (a = informRef(inf, agt, θ)

⊃ (θ(s′) = θ(s)))].

This says that after an action happens, every agent learns
that it has happened. Moreover, if the action is a sens-
ing action, the agent performing it acquires knowledge of
the associated proposition or term. Furthermore, if the ac-
tion involves someone informing agt that φ holds, then agt
knows this afterwards, and similarly for informWhether and
informRef. Note that this axiom only handles knowledge
expansion, not revision.

CASL also incorporates goal expansion and a limited form
of goal contraction. Goals or intentions are modeled using
an accessibility relation W over possible situations. The
W -accessible situations for an agent are the ones where she
thinks that all her goals are satisfied. W -accessible situa-
tions may include situations that the agent thinks are impos-
sible, unlike Cohen and Levesque’s [1] G-accessible worlds.
But intentions are defined in terms of the more primitive
W and K relations so that the intention accessible situa-
tions are W -accessible situations that are also compatible
with what the agent knows, in the sense that there is a K-
accessible situation in their history. This guarantees that
agents’ intentions are realistic, that is, agents can only in-
tend things that they believe are possible. Thus we have:

Int(agt, ψ, s)
.
= ∀s′, s∗. [W (agt, s∗, s)

∧K(agt, s′, s) ∧ s′ ≤ s
∗] ⊃ ψ(s′, s∗).

This means that the intentions of an agent in s are those
formulas that are true for all intervals between situations
s′ and s∗ where the situations s∗ are W -accessible from s
and have a K-accessible situation s′ in their history. In-
tentions are future oriented, and any goal formula will be
evaluated with respect to a finite path defined by a pair
of situations, a begining situation s′ and an ending situ-
ation s∗. This formalization of goals can deal with both
achievement goals and maintenance goals. An achievement
goal ψ is said to be satisfied if ψ holds between now and
then, i.e., if Eventually(ψ, now, then), which is defined as
∃s′.(now ≤ s′ ≤ then ∧ ψ(s′)). In [19], Shapiro showed
how positive and negative introspection of intentions can be
modeled by placing some constraints on K and W . To make
sure that agents’ wishes and intentions are consistent, W is
also constrained to be serial.

The SSA for W which handles intention change in CASL,
has the same structure as a SSA for a domain dependent
fluent. In the following, W+(agt, a, s∗, s) (W−(agt, a, s∗, s),
resp.) denotes the conditions under which s∗ is added to
(dropped from, resp.) W as a result of the action a:

W (agt, s∗, do(a, s)) ≡

W
+(agt, a, s∗, s) ∨ (W (agt, s∗, s) ∧ ¬W−(agt, a, s∗, s)).

An agent’s intentions are expanded when it is requested
something by another agent. After the request(req,agt,ψ)
action, agt adopts the goal that ψ, unless she has a conflict-
ing goal or is not willing to serve req for ψ. Therefore, this
action should cause agt to drop any paths in W where ψ
does not hold. This is handled in W−:

W
−(agt, a, s∗, s)

.
= IncompRequest(agt,a, s∗, s),

IncompRequest(agt,a, s∗, s)
.
=

[∃req, ψ. a = request(req, agt, ψ)

∧ Serves(agt, req, ψ, s) ∧ ¬Int(agt,¬ψ, s)

∧ ∃s′. K(agt, s′, s) ∧ s′ ≤ s
∗

∧ ¬ψ(do(a, s′), s∗)].

Here, the request action is considered a primitive action. The
preconditions of request are:

Poss(request(req, agt,ψ), s) ≡ Int(req, ψ, s).

A limited form of intention contraction is also handled
in CASL. Suppose that the agent req requests agt that ψ
and later decides it no longer wants this. The requester
req can perform the action cancelRequest(req,agt,ψ), which
causes agt to drop the goal that ψ. cancelRequest actions
are handled by determining what the W relation would have
been if the corresponding request action had never happened.
This type of goal contraction is handled in W+, which can
be defined as follows:

W
+(agt, a, s∗, s)

.
= ∃s1. W (agt, s∗, s1)

∧ ∃a1. do(a1, s1) ≤ s ∧ Cancels(a, a1)

∧ (∀a′, s′. do(a1, s1) < do(a′, s′) ≤ s ⊃

¬W−(agt, a′, s∗, s′)),

Cancels(a, a′)
.
= [∃req,ψ. a′ = request(req, agt,ψ)

∧ a = cancelRequest(req, agt, ψ)].

Suppose that a cancelRequest action occurs in situation s.
The W relation is first restored to the way it was before the
corresponding request action occured, i.e., in s1. Then start-
ing just after the request, all the actions a′ that occured in
the history of s (say in situation s′) are considered, and any
situation s∗ in W that satisfies W−(agt, a′, s∗, s′) is removed
from W . A cancelRequest action can only be executed if a
corresponding request action has occured in the past.

3. SIMPLE COOPERATIVE ABILITY
An agent cannot be expected to eventually achieve an

intention just because she has that intention, and she is act-
ing rationally. We also need to make sure that the agent
is capable of achieving the goal in the current situation [8].
In a single agent domain, an agent’s ability can roughly be
defined as her knowledge of a plan that is physically and
epistemically executable and whose execution achieves the
goal. However, modeling multiagent ability is a more com-
plex problem, since in this case we need to consider the
agents’ knowledge about each other’s knowledge and inten-
tions as well as how they choose actions, behave rationally,
etc. In this section, we develop a simple model of coopera-
tive ability of agents suitable for a limited multiagent con-
text in the absence of exogenous actions, i.e., actions whose
performance is not intended by the planning agent. In an
open multiagent framework, agents’ actions may interfere
with each other, possibly perturbing their plans. In some
cases, there are multiple strategies to achieve a common
goal, and the agents may fail unless they coordinate their
choice of strategy by reasoning about each other’s knowl-
edge, ability, and rational choice. Moreover, agents may
have conflicting goals or intentions. To simplify, we restrict
our framework by only allowing plans where the actions that
the other agents must do are fully specified, i.e., action del-
egation is possible, but (sub)goal delegation is not. The
primary agent, who is doing the planning, is constrained to
know the whole plan in advance. Thus, the primary agent is
allowed to get help from others, but she can only ask them
to perform specific actions. Given this, we do not need to
model the fact that the other agents behave rationally.

When dealing with ability, it is not enough to say that
the agent is able to achieve a goal iff she has a physically
executable plan, and any execution of this plan starting in
the current situation achieves the goal. We should also take
into account the epistemic and intentional feasibility of the
plan. This is necessary as physical executability does not
guarantee that the executor will not get stuck in a situ-
ation where it knows that some step must be performed,
but does not know which. For example, consider the plan
(a; If φ Then b Else c EndIf) | d, where actions a, b, c and
d are always possible, but where the agent does not know
whether φ holds after a. If the agent follows the branch
where the first action is a, she will get stuck due to incom-
plete knowledge. Hence, the result of deliberation should be
a kind of plan where the executor will know what to do next
at every step, a plan that does not itself require deliberation
to interpret. To deal with this, Sardiña et al. [17] defined
the notion of Epistemically Feasible Deterministic Programs
(EFDPs) for single agent plans and characterized deliber-
ation in terms of it. Note that EFDPs are deterministic,
since they are the result of deliberation and their execution
should not require making further choices.

Since we are dealing with cooperative multiagent ability,
we also need to make sure that the cooperating agents in-
tend to perform the requested actions when it is their turn to
act. We extend the notion of EFDP to handle simple multi-
agent plans as follows. A program is called an Epistemically
and Intentionally Feasible Deterministic Program (EIFDP)
in situation s for agent agt, if at each step of the program
starting at s, agt always has enough infomation to execute
the next action in the program, or knows that the executor
of the next action is another agent, and that this agent has
enough information to execute this action and intends to do
it. Put formally:

EIFDP (agt, δ, s)
.
=

∀δ′, s′. T rans∗(δ, s, δ′, s′) ⊃ LEIFDP (agt, δ′, s′),

LEIFDP (agt, δ, s)
.
=

Know(agt,F inal(δ, now) ∧

¬∃δ′, s′. T rans(δ,now, δ′, s′), s)

∨ ∃δ′. Know(agt,¬Final(δ, now) ∧

UTrans(δ, now, δ′, now), s)

∨ ∃δ′, a. Know(agt,¬Final(δ, now) ∧

Agent(a) = agt∧

UTrans(δ, now, δ′, do(a, now)), s)

∨ ∃δ′, agt′. Know(agt,¬Final(δ, now) ∧

∃a. UTrans(δ, now, δ′, do(a, now)) ∧

Agent(a) = agt
′ 6= agt ∧

Int(agt′,∃s′. s′ ≤ then

∧Do(a, now, s′), now), s).

Thus to be an EIFDP, a program must be such that all con-
figurations reachable from the initial program and situation,
involve a Locally Epistimically and Intentionally Feasible
Deterministic Program (LEIFDP). A program is a LEIFDP
in a situation with respect to an agent, if the agent knows
that the program is currently in its Final configuration and
no further transitions are possible, or knows that she is the
agent of the next action and knows what unique transition
(with or without an action) it can perform next, or knows

that someone else agt′ is the agent of the next action, that
agt′ knows what the action is and intends to do it next, and
knows what unique transition the program can perform next
with this action. Here, UTrans(δ, s, δ′, s′) means that the
program δ in s can perform a unique transition, which takes
the agent to s′ with the remaining program δ′. Note that
when it is the other agent’s turn, agt does not have to know
exactly what the next action is, i.e., know all the parameters
of the next action. However, at every step, she must know
what the remaining program is.

EIFDPs are suitable results for planning. They can always
be executed successfully and since they are deterministic,
they do not require further deliberation to execute. Using
EIFDP, ability can be defined as follows:

Can(agt, ψ(now, then), s)
.
=

∃δ. Know(agt,EIFDP (agt, δ, now) ∧

∃s′. Do(δ, now, s′) ∧

∀s′. (Do(δ, now, s′) ⊃ ψ(now, s′)), s).

Thus, an agent can achieve a goal in situation s, iff she
knows of a plan δ that is an EIFDP, is executable starting
at s, and any possible execution of the plan starting in the
current situation brings about the goal.

We use the following as our running example (adapted
from [12]) throughout the paper. Consider a world in which
there is a safe with a combination lock. If the safe is locked
and the correct combination is dialed, then the safe becomes
unlocked. However, dialing the incorrect combination will
cause the safe to explode. The agent can only dial a combi-
nation if the safe is intact, and it is not possible to change
the combination of the safe. Initially, the agent Agt1 has
the intention to open the safe, but does not know the com-
bination. However, she knows that Agt2 knows it. She also
knows that Agt2 is willing to serve/help her, and that Agt2
does not have the intention of not informing her of the com-
bination of the safe. Here are some of the axioms that we
use to model this domain:

sf1) Poss(a, s) ⊃ [Exploded(do(a, s)) ≡

∃c, agt. (a = dial(agt, c) ∧ Comb(s) 6= c)

∨Exploded(s)].

sf2) Poss(dial(agt, c), s) ≡ ¬Exploded(s).

sf3) Agent(dial(agt, c)) = agt.

sf4) ¬Exploded(S0).

The first axiom, a successor state axiom, states that the safe
has exploded after doing action a iff a denotes the action of
dialing the wrong combination, or if the safe has already
exploded. The second axiom, a precondition axiom, states
that it is possible to dial a combination for the safe in situa-
tion s iff the safe is intact in s. The third axiom is an agent
axiom and defines the agent of the dial action. The last ax-
iom is an initial situation axiom, and states that the safe is
initially intact. From now on, we will use Dsafe to denote
the set of axioms that we use to model this safe domain (see
[5] for the complete axiomatization).

Now, consider the follwing plan:2

σsafe = requestAct(Agt1, Agt2,

informRef(Agt2, Agt1, Comb(s)));

informRef(Agt2, Agt1, Comb(s));

dial(Agt1, Comb(s)).

So, the plan is that Agt1 will request Agt2 to inform her
of the combination of the safe, Agt2 will inform Agt1 of
the combination of the safe, and finally, Agt1 will dial the
combination to open the safe. We claim that σsafe is an
EIFDP in the initial situation for Agt1, and that Agt1 is
able to achieve her intention of opening the safe in the initial
situation S0:

Theorem 1.

a. Dsafe |= EIFDP (Agt1, σsafe, S0).

b. Dsafe |= Can(Agt1,Eventually(¬Locked), S0).

(a) holds as all configurations reached by σsafe starting in S0

are LEIFDP. (b) holds as Agt1 knows of a plan (i.e., σsafe),
which she knows is an EIFDP and is executable, and knows
that any execution of this plan ends up in a situation where
the safe is unlocked.

4. FROM INTENTIONS THAT TO INTEN-
TIONS TO ACT

In this section, we define rational plans and extend CASL
to model the role of intention and rationality in determining
an agent’s actions. This bridges the gap between future di-
rected intentions and present directed ones. We also present
a theorem that relates intention and ability to the eventual
achievement of intended goals.

Before going further, let us discuss the communication
actions that we will use in ECASL. Like in CASL, we use
three primitive informative communication actions, namely,
inform, informWhether, and informRef. However, unlike in
CASL, we provide two intention transfer communication ac-
tions, request and requestAct, and these are defined in terms
of inform.3 The request action can be used by an agent
to request another agent to achieve some state of affairs,
whereas requestAct involves an agent’s request to another
agent to perform some particular complex action starting in
the next situation. Formally,

request(req, agt, φ)
.
=

inform(req, agt, Int(req, φ, now)),

requestAct(req, agt, δ)
.
=

request(req, agt,∃a. DoNext(δ, do(a, now))

∧Agent(δ) = agt).

Here DoNext(δ, s) is an abbreviation for ∃s∗. s ≤ s∗ ≤ then
∧ Do(δ, s, s∗), and Agent(δ)=agt means that the agent of
all actions in δ is agt. In our specification, we only allow
sincere requests. That is, an agent can perform a request

2requestAct is an abbreviation introduced in the next sec-
tion; it denotes a special kind of request, namely, a request
to perform an action.
3A similar account of request was presented by Herzig and
Longin [4], where it is defined as inform about intentions,
and the requested goals are adopted via cooperation princi-
ples.

if the request is not contradictory to her current intentions.
So defining requests as informing of intentions is reasonable.
However, since requests are modeled in terms of inform, and
since we are using true belief, the account seems to be overly
strict. For instance, in the safe domain, σsafe seems like a
rational plan for Agt1 in the initial situation. However, ini-
tially Agt1 does not have the intention that Agt2 informs
her the combination of the safe. So we cannot show that
σsafe is rational, since it requires Agt1 to know that she has
the intention before she can inform about it. One way to
solve this is to relax the preconditions of inform. However,
this can have problematic consequences, as someone could
inform of something without knowing it, and this might re-
quire belief revision by the addressee. Later, we will discuss
another way to avoid this problem by building commitment
into plans. For now, we just assume that initially Agt1 has
the intention that Agt2 informs her of the combination of
the safe.

To allow the cancellation of requests, we also provide two
actions, namely, cancelRequest, and cancelReqAct. Unlike
CASL where cancelRequest is primitive, we define it using
inform. These two actions are defined as follows:

cancelRequest(req, agt, ψ)
.
=

inform(req, agt,¬Int(req,ψ, now)),

cancelReqAct(req, agt, δ)
.
=

cancelRequest(req, agt,∃s∗, s+, prev.

prev = do(requestAct(req, agt, δ), s+)

∧ s+ < now ≤ s
∗ ≤ then ∧Do(δ, prev, s∗)

∧Agent(δ) = agt).

Now let us look at what plans are rational for an agent.
An agent that is acting rationally, should prefer some plans
to others. To this end, we define an ordering on plans:

� (agt, δ1, δ2, s)
.
=

∀s′. K(agt, s′, s) ∧ ∃s∗. Do(δ2, s
′

, s
∗) ∧W (agt, s∗, s)

⊃ [∃s∗. Do(δ1, s
′

, s
∗) ∧W (agt, s∗, s)].

That is, a plan δ1 is as good as another plan δ2 in situation s
for an agent agt iff for all W -accessible situations that can be
reached by following δ2 from a situation that is K-accessible
from s, say s′, there exists a W -accessible situation that can
be reached from s′ by following δ1. In other words, δ1 is at
least as good as δ2 if it achieves the agent’s goals in all the
possible situations where δ2 does.

Using EIFDP and the � relation, we next define rational
plans. A plan δ is said to be rational in situation s for an
agent agt if the following holds:

Rational(agt, δ, s)
.
=

∀δ′. � (agt, δ′, δ, s) ⊃ � (agt, δ, δ′, s)

∧EIFDP (agt, δ, s).

Thus, a rational plan in a situation s, is a plan that is as
good as any other plan in s and is an EIFDP in s.

For example, consider the plan σsafe. We claim that σsafe

is as good as any other plan available to Agt1 in the initial
situation, and that σsafe is rational in the initial situation.

Theorem 2.

a. Dsafe |= ∀σ. � (Agt1, σsafe, σ, S0).

b. Dsafe |= Rational(Agt1, σsafe, S0).

Since this plan achieves Agt1’s intention of opening the safe
starting in any situation that isK-accessible to S0, (a) holds.
(b) follows from the fact that σsafe is as good as any other
plan in S0 and is an EIFDP in S0.

In most cases, there are many rational plans (i.e., ways of
achieving as many goals as possible). The decision of which
plan the agent commits to is made based on pragmatic/non-
logical grounds. We do not model this here. Instead, we in-
troduce a commit(agt, δ) action that will model the agent’s
commiting to a particular plan δ, more specifically, commit-
ing to executing δ next. The action precondition axiom for
the commit action is as follows:

Poss(commit(agt, δ), s) ≡ ¬Int(agt,¬DoNext(δ, now), s).

That is, the agent agt can commit to a plan δ is situation s,
iff the agent currently does not have the intention that the
actions in the plan do not happen next.

Next, we extend the SSA for W seen earlier to handle
intention revision as a result of the agent’s commitment to
a rational plan. We modify W− as follows:

W
−(agt, a, s∗, s)

.
= IncompRequest(agt,a, s∗, s) ∨

IncompCommit(agt,a, s∗, s).

Here, IncompCommit handles the expansion of the agent’s
intentions that occur when a commit action occurs. We
define IncompCommit as follows:

IncompCommit(agt,a, s∗, s)
.
=

[∃δ. a = commit(agt, δ) ∧ ∃s′. s′ ≤ s
∗ ∧K(agt, s′, s)

∧ ¬∃s∗∗. (s′ < s
∗∗ ≤ s

∗ ∧Do(δ, do(a, s′), s∗∗))].

So, after the performance of a commit action in s, a W -
accessible situation s∗ in s will be dropped from agt’s new set
of W -accessible situations if the committed to action does
not happen next over the interval between the W -accessible
situation s∗ and its predecessor s′ that is K-accessible from
the current situation s.

The definition of W+ remains unchanged. Note that if
exogenous actions are allowed, agents need to revise their
commitments when an exogenous action occurs by uncom-
miting from the currently committed plan, and committing
to a new rational plan. We return to this issue in Section 5.

We now show that our formalization of intentions has
some desirable properties:

Theorem 3.

a. |= ¬Int(agt,¬φ, s) ∧ Serves(agt, req, φ, s)

∧ Poss(request(req, agt, φ), s) ⊃

Int(agt, φ, do(request(req, agt,φ), s)).

b. |= Poss(commit(agt, δ), s) ⊃

Int(agt,DoNext(δ, now), do(commit(agt, δ), s)).

(a) says that if an agent agt does not have the intention
that not φ in s, then she will have the intention that φ in
the situation resulting from another agent req’s request to
agt that φ in s, provided that she is willing to serve req on φ,
and that the request action is possible in s. (b) states that if
an agent agt does not have the intention of not performing
a complex action δ in s (i.e. if commit(agt, δ) is possible in
s), then she will have the intention of performing it after she
commits to it.

As mentioned earlier, the problem that arises as a result of
defining requests as informing of intentions can be solved by

building commitment into plans. Consider the safe example;
we assumed earlier that initially Agt1 has the intention that
Agt2 informs her the combination of the safe. We can now
relax this constraint by considering σ∗

safe to be our new ra-
tional plan, where σ∗

safe = commit(Agt1, σsafe);σsafe, i.e.
the new plan is that Agt1 commits to σsafe and then σsafe

is performed. Since Agt1 commits to σsafe before she exe-
cutes it, the SSA for W will make her adopt the intention
that Agt2 informs her the combination of the safe after she
requests Agt2 to do so, and thus we do not need to assume
that this holds.
commit provides a way to link future directed intentions

and present directed ones. We next specify a generic meta-
controller for an agent that arbitrarily chooses a rational
plan, commits to it, and executes it. Then we can prove
a theorem about the relationship between intention, ability,
and the eventual achievement of an intended goal. This
theorem serves as a proof of soundness of our agent theory.

The following meta-controller allows us to refer to the
future histories of actions that may occur for an agent who
is behaving rationally until ψ holds. Rational behavior until
ψ can be defined as follows (we assume that there are no
exogenous actions):

BehaveRationallyUntil(agt,ψ(now))
.
=

πδ. Rational(agt, δ, now)?; commit(agt, δ);

While ¬ψ(now) Do

If ∃a. Int(agt, do(a, now) ≤ then, now) ∧

Agent(a) = agt) Then

[πa. (Int(agt, do(a, now) ≤ then, now) ∧

Agent(a) = agt)?;a]

Else

πagt
′

. [Int(agt,∃a. do(a, now) ≤ then ∧

Agent(a) 6= agt ∧

Agent(a) = agt
′

, now)?;

(πa′. Int(agt′, do(a′, now) ≤ then, now)?; a′)]

EndIf EndWhile.

That is, rational behavior until ψ can be defined as arbri-
tarily choosing a rational plan, committing to it, and then
executing it as long as ψ does not hold. A rational plan
can have actions by the planning agent and by other agents.
When it is the planning agent’s turn to act, she should per-
form the action that she intends to perform next; otherwise,
she should wait for the other agent to act. When it is the
other agent’s turn, it will perform the action that it is sup-
posed to perform, because rational plans are EIFDP, and
thus the other agent must intend to do the action required
by the plan. Note that we only deal with achievement goals
here.

One problem with CASL is that the execution of plans is
viewed from the system’s perspective rather than from the
agents’ perspective. So, although CASL includes operators
that model agents’ knowledge and goals, the system behav-
ior is simply specified as a set of concurrent processes. To
deal with this problem, Lespérance [7] proposed an account
of subjective plan execution in CASL; the program construct
Subj(agt, δ) ensures that δ can be executed by agt based on
her own knowledge state. We have extended this notion
to deal with multiagent plans (i.e. plans with actions by
agents other than the executor) and consider other agents’

intentions; see [5] for the formal details.
Next, we present our “success theorem”:4

Theorem 4. From Commitment and Ability to Eventu-
ality

|= [OInt(agt,Eventually(γ, now, then), s)

∧ Can(agt,Eventually(γ, now, then), s)

∧ Int(agt,Eventually(ψ, now, then), s)] ⊃

AllDo(Subj(agt,BehaveRationallyUntil(agt,ψ)), s).

Intuitively, if in some situation, an agent intends to achieve
some goal and is able to achieve all its intentions, then the
agent will eventually achieve the goal in all rational histories
from that situation. OInt(agt,ψ, s) means that ψ is all the
intentions that agt has in s. This construct must be used
as we have to assume that the agent is able to achieve all
her intentions. If this is not the case, the agent may have to
choose between some of its goals and the BehaveRational-
lyUntil operator will not guarantee that a specific goal (i.e.,
ψ) will be achieved. If there are exogenous actions, then
a more generic meta-controller can be defined. We discuss
this in the next section.

We also have the following corollary for the safe domain:

Corollary 1.

Dsafe |= AllDo(Subj(Agt1,

BehaveRationallyUntil(Agt1,¬Locked)), S0).

We have shown in Theorem 1(b) that Agt1 can achieve her
intention of opening the safe in the initial situation. More-
over, the only intention of Agt1 is to open the safe. It follows
from Theorem 4 that Agt1 will eventually open the safe if
she behaves rationally starting in S0 (see [5] for a complete
proof).

5. DISCUSSION AND FUTURE WORK
In this paper, we have presented a formal theory of agency

that deals with simple multiagent cooperation and shows
how future directed intentions and present directed ones
can be related. An agent’s current rational plans depend
on her current intentions. The commit action models how
the agent’s intentions can be updated to include a commit-
ment to a rational plan. Using this, we have formulated
a planning framework for multiple cooperating and com-
municating agents in CASL. We specified how an agent’s
future directed intentions will lead the agent to adopt a ra-
tional plan and then carry it out using the meta-controller
BehaveRationallyUntil.

To relate agents’ intentions with their actions, Cohen and
Levesque [1] required that agents eventually drop all their
intentions either because they had been achieved or because
they were viewed as impossible to achieve (AKA the no infi-
nite deferral assumption). A similar account was presented
by Rao and Georgeff [13]. We believe that this no infinite
deferral assumption should be a consequence of an agent be-
having rationally as specified by other axioms of the theory,
rather than be imposed separately. A more intuitive account
was presented in [22], where Singh showed that rather than

4The construct AllDo is a strict version of Do that requires
that all possible executions of a program terminate success-
fully; see [7] for a formal definition.

having it as an assumption, the no infinite deferral principle
can be derived from the theory.

In [15], Sadek introduces some axioms to incorporate ex-
plicit principles of rational behaviour in his adaptation of the
Cohen and Levesque framework. The application of these
axioms makes it possible for an agent to build rational plans
in a deductive way by inference of causal chains of intention,
without needing to resort to a separate planner. From an
operational point of view, agents in this framework gener-
ate plans using a backward chaining planning mechanism.
Sadek uses the rational effect of communication actions as
an integral part of his specification. These rational effects
express the reasons which lead an agent to select an action,
and are related to perlocutionary effects. However, it is not
specified under what conditions the rational effects become
actual effects, and one cannot reason about these conditions.
Moreover, the planning mechanism in [15] is incomplete and
many rational plans cannot be inferred. In [16], Sadek et al.
describe how this theory is used to develop an implemented
rational agent engine called ARTIMIS. This technology has
been used to build natural language dialogue systems and
multiagent applications. Louis [10] recently extended AR-
TIMIS [16] to incorporate a more general model of planning
(state space planning by regression and hierarchical plan-
ning) and plan adoption. His framework is more complex
than ours and uses defaults (as does Sadek’s). The approach
supports multiagent plans and has been implemented. But
there is no formalization of epistemically feasible plans, and
no success theorem. Commitment to a plan is modelled
using a special predicate rather than using the intention at-
titude.

Although independently motivated, our account closely
resembles the one in [24], where a similar notion of com-
mitment to actions was introduced to relate intentions and
actions. However, that framework does not model rational-
ity or provide a success theorem. There has also been related
work that tries to extend agent programming languages to
support declarative goals (e.g. [23]).

Our semantics of communication acts is mentalistic, in
contrast to recent social commitment semantics (e.g. [3]).
The public social commitment level is obviously important,
but we don’t think that communication can be reduced to
it. The reason agents communicate is that this serves their
private goals. One must usually reason about these goals
and the associated beliefs to really understand the agents’
behavior.

The theory presented here is a part of our ongoing re-
search on the semantics of speech acts and communication
in the situation calculus. In [5], we present an extended
version of our framework where we allow exogenous actions.
To deal with these unintended actions, an agent needs to
revise the plan it is committed to whenever an exogenous
action occurs. In other words, she needs to un-commit from
the previously committed plan, consider the new set of ra-
tional plans, and commit to one of them. We handle the
un-commiting part in the SSA for W . The agents’ com-
mitment to a new rational plan is handled using a more
sophisticated meta-controller. This controller iterates the
BehaveRationallyUntil program as long as the goal remains
un-achieved and there is a plan that is rational in the current
situation. In [5], we also define a notion of conditional com-
mitment, and model some simple communication protocols
using it.

Our current agent theory is overly simplistic in many
ways. One strict constraint is that we do not allow coop-
erating agents to choose how they will achieve the goals
delegated to them since we assume that the planning agent
knows the whole plan in advance. Only one agent is assumed
to do planning. In future work, we will try to relax this
restriction and to model some interaction protocols that in-
volve multiple planning agents. It would also be interesting
to try to use this formalization to implement flexible com-
munication agents as in [16] and to develop tools to support
multiagent programming that conform to ECASL.

6. REFERENCES
[1] P. Cohen and H. Levesque. Intention is choice with

commitment. Artificial Intelligence, 42(2-3):213–361,
1990.

[2] G. De Giacomo, Y. Lespérance, and H. Levesque.
Congolog, a concurrent programming language based
on the situation calculus. Artificial Intelligence,
121:109–169, 2000.

[3] N. Fornara, F. Vigano, and M. Colombetti. Agent
communication and institutional reality. In R. van
Eijk, M.-P. Huget, and F. Dignum, editors, Agent
Communication: Proc. of the AAMAS 04 Workshop
on Agent Communication, vol. 3396 of LNAI.
Springer, 2005.

[4] A. Herzig and D. Longin. A logic of intention with
cooperation principles and with assertive speech acts
as communication primitives. In Proc. of the First
International Joint Conference on AAMAS, 2002.

[5] S. Khan. A situation calculus account of multiagent
planning, speech acts, and communication. Master’s
thesis, Dept. of Computer Science, York University,
Toronto, ON, Canada, 2005 (In preparation).

[6] G. Lakemeyer and H. Levesque. Aol: A logic of acting,
sensing, knowing, and only-knowing. In Proc. of the
6th International Conference on Principles of KR&R,
pages 316–327, 1998.

[7] Y. Lespérance. On the epistemic feasibility of plans in
multiagent systems specifications. In J.-J. C. Meyer
and M. Tambe, editors, Proc. of the 8th International
Workshop on ATAL, vol. 2333 of LNAI, pages 69–85.
Springer, 2002.

[8] Y. Lespérance, H. Levesque, F. Lin, and R. Scherl.
Ability and knowing how in the situation calculus.
Studia Logica, 66(1):165–186, 2000.

[9] H. Levesque. What is planning in the presence of
sensing? In Proc. of the Thirteenth National
Conference on AI, pages 1139–1146, Portland, OR,
1996.

[10] V. Louis. Conception et Mise en Oeuvre de Modèles
Formels de Calcul de Plans d’Action Complexes par
un Agent Rationnel Dialoguant. PhD thesis, Université
de Caen, Caen, France, 2002.

[11] J. McCarthy and P. Hayes. Some philosophical
problems from the standpoint of artificial intelligence.
Machine Intelligence, 4:463–502, 1969.

[12] R. Moore. A formal theory of knowledge and action.
In J. Hobbs and R. Moore, editors, Formal Theories of

the Commonsense World, pages 319–358. Ablex, 1985.

[13] A. Rao and M. Georgeff. Modeling rational agents
within a BDI-architecture. In R. Fikes and
E. Sandewall, editors, Proc. of the 2nd International
Conference on Principles of KR&R, pages 473–484,
1991.

[14] R. Reiter. The frame problem in the situation
calculus: A simple solution (sometimes) and a
completeness result for goal regression. In V. Lifschitz,
editor, Artificial Intelligence and Mathematical Theory
of Computation: Papers in the Honor of John
McCarthy. Academic Press, San Diego, CA, 1991.

[15] D. Sadek. Communication theory = rationality
principles + communicative act models. In Proc. of
the AAAI 94 Workshop on Planning for Interagent
Communication, 1994.

[16] D. Sadek and P. Bretier. ARTIMIS: Natural dialogue
meets rational agency. In Proc. of the Fifteenth IJCAI,
pages 1030–1035, 1997.

[17] S. Sardiña, G. De Giacomo, Y. Lespérance, and
H. Levesque. On the semantics of deliberation in
indigolog - from theory to implementation. Annals of
Mathematics and Artificial Intelligence,
41(2-4):259–299, 2004.

[18] R. Scherl and H. Levesque. Knowledge, action, and the
frame problem. Artificial Intelligence, 144(1-2), 2003.

[19] S. Shapiro. Specifying and Verifying Multiagent
Systems Using CASL. PhD thesis, Dept. of Computer
Science, University of Toronto, Toronto, ON, Canada,
2005.

[20] S. Shapiro and Y. Lespérance. Modeling multiagent
systems with the cognitive agents specification
language – a feature interaction resolution application.
In C. Castelfranchi and Y. Lespérance, editors,
Intelligent Agents VII: Proc. of the 2000 Workshop on
ATAL, vol. 1986 of LNAI, pages 244–259. Springer,
2001.

[21] S. Shapiro, Y. Lespérance, and H. Levesque. The
cognitive agents specification language and verification
environment for multiagent systems. In
C. Castelfranchi and W. Johnson, editors, Proc. of the
1st Int. Joint Conference on AAMAS, pages 19–26,
2002.

[22] M. Singh. Multiagent Systems: A Theoretical
Framework for Intentions, Know-How, and
Communications, vol. 799 of LNAI. Springer, 1994.

[23] W. van der Hoeka, K. Hindriks, F. de Boer, and
J.-J. C. Meyer. Agent programming with declarative
goals. In C. Castelfranchi and Y. Lespérance, editors,
Intelligent Agents VII: Proc. of the 7th International
Workshop ATAL 2000, vol. 1986 of LNAI. Springer,
2000.

[24] B. van Linder, W. van der Hoek, and C. M. J.-J.
Formalising motivational attitudes of agents : On
preferences, goals, and commitments. In
M. Wooldridge, J. Muller, and M. Tambe, editors,
Intelligent Agents vol. II – Proc. of the 1995
Workshop on ATAL, vol. 1037 of LNAI, pages 17–32.
Springer, 1996.

