
The 37th Canadian Conference on Artificial Intelligence
DOI: 0

Towards a Definition of Primary Cause
in Hybrid Dynamic Domains

Asim Mehmood, Shakil M. Khan*

Department of Computer Science
University of Regina, Saskatchewan, Canada

*shakil.khan@uregina.ca

Abstract
The notion of primary cause of an effect or outcome can be defined as the immediate

reason behind the outcome, representing the phenomenon –action or event in a dynamic
framework– that is directly responsible for bringing about the effect. When causal anal-
ysis is done relative to an observed effect and an observed history of actions or events,
this is further categorised as actual or token-level primary cause. While there has been
a lot of work on actual primary as well as indirect causes in discrete dynamic domains,
very few studies address causation in hybrid dynamic domains, that is dynamic systems
where change can be both discrete and continuous. Building on recent progress, in this
paper we propose a first definition of primary cause in a hybrid action-theoretic frame-
work. Our proposal is set within a hybrid variant of the situation calculus. We show
that our formalization has some basic intuitive properties.
Keywords: Actual cause, Hybrid dynamic systems, Situation calculus, Logic.

This article is © 2024 by author(s) as listed above. The article is licensed under a Creative Commons
Attribution (CC BY 4.0) International license (https://creativecommons.org/licenses/by/4.0/legalcode),
except where otherwise indicated with respect to particular material included in the article. The article
should be attributed to the author(s) identified above.

1. Introduction

A fundamental task in dynamic domains is to figure out the causes of change, e.g. that of
an observed effect becoming true given a history of actions, a problem known as actual or
token-level causation. Based on Pearl’s original work [1, 2], Halpern and Pearl and others
[3–9] have extensively studied the problem of actual causation and significantly advanced
this field. Halpern and Pearl’s approach is based on the concept of structural equation
models (SEM) [10] and follows the Humean counterfactual definition of causation. The
latter states that “an outcome B is caused by an event A” is the same as saying that
“had A never occurred, B never had existed”. This definition suffers from the problem of
preemption: it could be the case that in the absence of event A, B would still have occurred
due to another event, which in the original trace was preempted by A. Halpern and Pearl
avoid preemption by performing selective counterfactual analysis and suspending some of the
model’s mechanisms. While their inspirational work has been used for practical applications,
their approach based on SEM has been nevertheless criticized for its limited expressiveness
[6, 7, 11], and researchers have attempted to extend it with additional features [12].

In recent years, researchers have become increasingly interested in studying causation
within more expressive action-theoretic frameworks, in particular in that of the situation
calculus [13–15]. Among other things, this allows one to formalize causation from the
perspective of individual agents by defining a notion of epistemic causation [16] and by
supporting causal reasoning about conative effects, which in turn has proven to be useful
for explaining agent behaviour using causal analysis [17] as well as has the potential for
defining important concepts such as responsibility and blame [18].

While there has been much work on actual causality, the vast majority of the work in this
area has focused on defining causes in discrete domains. However, a distinguishing feature of
the real world is that change can be both discrete and continuous. Unfortunately, very few
studies address causation in hybrid dynamic systems, and those that do are framed within

causal models that are known to have limited expressiveness and suffer from a variety of
problems. For instance, in [19], Halpern and Peters proposed an extension of SEMs, termed
generalized structural-equations models (GSEMs). GSEMs can capture hybrid systems by
allowing specified interventions, which can lead to a potentially infinite number of outcomes.
To manage complexity, the language is restricted to explicitly reference countably many
values and interventions. However, despite improving on expressivity of SEM-based causal
models, it is not clear how one can formalize various aspects of action-theoretic/dynamic
frameworks there, e.g. non-persistent change supported by fluents, possible dependency
between events, temporal order of event occurrence, etc.

Inspired by the aforementioned work on action-theoretic formalization of actual causation
[14, 16], in this paper, we propose a formal account of actual cause in hybrid dynamic
domains. Our formalization is set within a recently proposed hybrid variant of the situation
calculus [20, 21]. We focus on actual primary cause and study causation relative to primitive
fluents exclusively. We show that our formalization has some basic intuitive properties and
investigate the conditions under which the primary cause persists.

The paper is organized as follows: in the next section, we introduce our base framework,
the situation calculus [22] and the recently proposed hybrid temporal situation calculus [20]
along with an example therein. In Section 3, we recap previous work on actual causation in
the situation calculus. Then in Section 4, we propose our definition of actual primary cause
in the HTSC. We also discuss causation relative to our running example and prove some
intuitive properties. Finally, we conclude the paper with some discussion in Section 5.

2. Preliminaries

The Situation Calculus

The situation calculus (SC) is a well-known second-order language for representing and
reasoning about dynamic worlds [22, 23]. In the SC, all changes are due to named actions,
which are terms in the language. Situations represent a possible world history resulting
from performing some actions. The constant S0 is used to denote the initial situation where
no action has been performed yet. The distinguished binary function symbol do(a, s) de-
notes the successor situation to s resulting from performing the action a. The expression
do([a1, · · · , an], s) represents the situation resulting from executing actions a1, · · · , an, start-
ing with situation s. As usual, a relational/functional fluent representing a property whose
value may change from situation to situation takes a situation term as its last argument.
There is a special predicate Poss(a, s) used to state that action a is executable in situation
s. Also, the special binary predicate s ⊏ s′ represents that s′ can be reached from situation
s by executing some sequence of actions. s ⊑ s′ is an abbreviation of s ⊏ s′ ∨ s = s′.
s < s′ is an abbreviation of s ⊏ s′ ∧ Executable(s′), where Executable(s) is defined as
∀a′, s′. do(a′, s′) ⊑ s ⊃ Poss(a′, s′), i.e. every action performed in reaching situation s was
possible in the situation in which it occurred. s ≤ s′ is an abbreviation of s < s′ ∨ s = s′.

In the SC, a dynamic domain is specified using a basic action theory (BAT) D that in-
cludes the following sets of axioms: (i) (first-order or FO) initial state axioms DS0 , which
indicate what was true initially; (ii) (FO) action precondition axioms Dap , characteriz-
ing Poss(a, s); (iii) (FO) successor-state axioms Dss , indicating precisely when the fluents
change; (iv) (FO) unique-names axioms Duna for actions, stating that different action terms
represent distinct actions; and (v) (second-order or SO) domain-independent foundational
axioms Σ, describing the structure of situations [24]. Although the SC is SO, Reiter [22]
showed that for certain type of queries ϕ, D |= ϕ iff Duna ∪ DS0 |= R[ϕ], where R is a
syntactic transformation operator called regression and R[ϕ] is a SC formula that compiles
dynamic aspects of the theory D into the query ϕ. Thus reasoning in the SC for a large
class of interesting queries can be restricted to entailment checking w.r.t a FO theory [22].

Hybrid Temporal Situation Calculus

The SC only allows discrete changes to fluents as a result of actions. However in the real
world, many changes are continuous rather than discrete and happens due to the passage of
time. For example, a change in room temperature after adjusting the thermostat happens
over time, but not immediately. Reiter’s temporal SC [22] can model continuous change. In
his framework, each action is given a time argument, but the fluents remained atemporal
and won’t actually change with time; instead, they attain certain values when these time-
stamped actions are performed. One cannot query the value of a continuous fluent at some
arbitrary time. For example, in a dropping ball scenario, the ball’s current position cannot
be determined at a specific moment without referencing a time-stamped action.

To accommodate time, Reiter introduced two special functions, time(a), which refers to
the time at which an action a is executed, and start(s), which gives the starting time of
the situation s. time is specified by an axiom time(a(x⃗, t)) = t (included in DS0) for every
action function a(x⃗, t) in the domain. start is specified by the new foundational axiom
start(do(a, s)) = time(a). The starting time of S0 is not enforced. To outlaw temporal
paradoxes, the abbreviation Executable(s) is redefined as below.

Executable(s)
def
= ∀a, s′. do(a, s′) ⊑ s ⊃ (Poss(a, s′) ∧ start(s′) ≤ time(a)).

The hybrid temporal situation calculus (HTSC) [20, 21] takes inspiration from hybrid
systems in control theory, which are based on discrete transitions between states that con-
tinuously evolve over time. In HTSC, SC (atemporal) fluents are preserved, not to represent
continuous change, but rather to provide a context within which the values of temporal flu-
ents can change. For instance, the velocity of a ball, a continuous fluent, changes over time
when the ball is in a state of falling. Here, the discrete fluent Falling(s) serves as the context
that influences how the continuous functional fluent velocity(t, s) varies with time.

HTSC modifies SC’s BAT by including the axioms for time(a) and start(s) as well as the
new definition of Executable(s) as discussed above in DS0

and in Σ, respectively. Moreover,
in addition to Reiter’s successor-state axioms (SSA) [22], which define how fluents change
as a result of named actions, HTSC introduces the following state evolution axioms (SEA)
[20], each of which defines how a temporal fluent f(x⃗)’s value changes over time.1

f(x⃗, t, s) = y ≡ [Φ(x⃗, y, t, s) ∨ y = f(x⃗, start(s), s) ∧ ¬Ψ(x⃗, s)].

Here Φ(x⃗, y, t, s) represents
∨

1≤i≤k(γi(x⃗, s) ∧ δi(x⃗, y, t, s)), where γi is a context and δi is
a relevant formula to be used to compute the temporal fluent f ’s value when γi holds. Ψ
denotes

∨
1≤i≤k γi(x⃗, s), which represents all the mutually exclusive relevant contexts of a

temporal fluent. Thus the above SEA states that the value of a temporal fluent f(x⃗) changes
only if some context γi holds and according to the rules defined in the formula δi associated
with γi; otherwise, it remains unchanged. The formula δi(x⃗, y, t, s) implicitly or explicitly
defines y using some arbitrary (domain-specific) constraints on the variables and fluents.

A hybrid basic action theory [20] is defined as a collection of axioms Σ ∪ Dss ∪ Dap ∪
Duna ∪ DS0

∪ Dse, where Dse is the set of state evolution axioms.

Example. We use a simple nuclear power plant (NPP) as our running example. In this
domain, we have the following actions: rupture(p, t), i.e. a pipe in plant p ruptures at time
t, csFailure(p, t), i.e. the cooling system of p fails at t, fixP(p, t), i.e. a pipe of p is fixed at
t, fixCS (p, t), i.e. the cooling system of p is fixed at t, and mRadiation(p, t), representing
monitoring of radiation of p at t. For simplicity, we assume a single pipe per plant.

The fluents in this domain consists of Ruptured(p, s) and CSFailed(p, s), representing
plant p has a ruptured pipe in situation s and the cooling system of p has failed in s,

1Henceforth, all free variables in a sentence are assumed to be universally quantified at the front.

respectively, as well as the temporal fluent coreTemp(p, t , s), which stands for the core
temperature of p at time t in situation s.

We now give the domain-dependent axioms, starting with the action precondition axioms.

Poss(rupture(p, t), s) ≡ true,

Poss(fixP(p, t), s) ≡ Ruptured(p, s),

Poss(csFailure(p, t), s) ≡ ¬CSFailed(p, s),
Poss(fixCS (p, t), s) ≡ CSFailed(p, s),

Poss(mRadiation(p, t), s) ≡ true.

These are self-explanatory. We also have the following successor-state axioms:

Ruptured(p, do(a, s)) ≡ ∃t. a = rupture(p, t) ∨ (Ruptured(p, s) ∧ ¬∃t. a = fixP(p, t)),

CSFailed(p, do(a, s)) ≡ ∃t. a = csFailure(p, t) ∨ (CSFailed(p, s) ∧ ¬∃t. a = fixCS (p, t)).

Thus, the pipe of plant p has ruptured after action a happens in situation s, i.e. in do(a, s),
iff a is the action of rupturing the pipe of p at some time t, or the pipe of p was already
ruptured in s and a does not refer to the action of fixing the pipe of p at some time t. The
SSA for CSFailed is similar.

For core temperature, we have the following state evolution axiom (here γ1(p), γ2(p),
and γ3(p) denote the contexts Ruptured(p)∧CSFailed(p), Ruptured(p)∧¬CSFailed(p), and
¬Ruptured(p) ∧ CSFailed(p), respectively):

coreTemp(p, t, s) = y ≡ [(γ1(p, s) ∧ δ1(p, t, s)) ∨ (γ2(p, s) ∧ δ2(p, t, s)) ∨ (γ3(p, s) ∧ δ3(p, t, s))

∨ (y = coreTemp(p, start(s), s) ∧ ¬(γ1(p, s) ∨ γ2(p, s) ∨ γ3(p, s)))].

That is, the value of coreTemp of p at time t in situation s is dictated by the formula δ1
if both p’s cooling system has failed and its pipe was ruptured, δ2 if p’s pipe was ruptured
but its cooling system is working, δ3 if p’s cooling system has failed but its pipe is intact,
and remains the same as in start(s) otherwise. Here δi for i = 1, 2, 3 is defined as follows:

δi(p, t, s)
def
= coreTemp(p, t, s) = coreTemp(p, start(s), s) + (t− start(s))×∆i,

where ∆1 = 100,∆2 = 35, and ∆3 = 55. The above formula computes coreTemp(p, t, s) by
adjusting the initial temperature at start(s) based on the elapsed seconds t − start(s) and
specifies a rate of temperature increase, 100, 35, or 55 degrees per second, resp., depending
on the context γi (we could have used more realistic differential equations just as easily).

We assume that there is at least one NPP P1 in our domain. We also have the follow-
ing initial state axioms for P1: ¬Ruptured(P1, S0), ¬CSFailed(P1, S0), and coreTemp(P1,
start(S0), S0) = −50. Finally, the unique-names axioms for the above actions can be defined
as usual. Henceforth, we use Dnpp to refer to the above axiomatization.

3. Actual Achievement Cause in the SC

Given a history of actions/events (often called a scenario) and an observed effect, actual
causation involves figuring out which of these actions are responsible for bringing about this
effect.2 When the effect is assumed to be false before the execution of the actions in the
scenario and true afterwards, the notion is referred to as achievement (actual) causation.
Based on Batusov and Soutchanski’s original proposal [14], Khan and Lespérance (KL)
recently offered a definition of achievement cause in the SC [16]. Both of these frameworks
assume that the scenario is a linear sequence of actions, i.e. no concurrent actions are
allowed. KL’s proposal can deal with epistemic causes and effects; e.g., an agent may
analyze the cause of some newly acquired knowledge, and the cause may include some

2We use actions and events interchangeably.

knowledge-producing action, e.g. inform. They showed that an agent may or may not know
all the causes of an effect, and can even know some causes while not being sure about others.

To formalize reasoning about effects, KL [16] introduced the notion of dynamic formulae.
An effect φ in their framework is thus a dynamic formula.3 Given an effect φ, the actual
causes are defined relative to a narrative (variously known as a scenario or a trace) s. When
s is ground, the tuple ⟨φ, s⟩ is often called a causal setting [14]. Also, it is assumed that
s is executable, and φ was false before the execution of the actions in s, but became true
afterwards, i.e. D |= Executable(s) ∧ ¬φ[S0] ∧ φ[s]. Here φ[s] denotes the formula obtained
from φ by restoring the appropriate situation argument into all fluents in φ (see Def. 2).

Note that since all changes in the SC result from actions, the potential causes of an effect
φ are identified with a set of action terms occurring in s. However, since s might include
multiple occurrences of the same action, one also needs to identify the situations where these
actions were executed. To deal with this, KL required that each situation be associated with
a time-stamp, which is an integer for their theory. Since in the context of knowledge, there
can be different epistemic alternative situations (possible worlds) where an action occurs,
using time-stamps provides a common reference/rigid designator for the action occurrence.
KL assumed that the initial situation starts at time-stamp 0 and each action increments the
time-stamp by one. Thus, their action theory includes the following axioms:

timeStamp(S0) = 0,

∀a, s, ts. timeStamp(do(a, s)) = ts ≡ timeStamp(s) = ts− 1.

With this, causes in their framework is a non-empty set of action-time-stamp pairs derived
from the trace s given φ.

The notion of dynamic formulae is defined as follows:

Definition 1. Let x⃗, θa, and y⃗ respectively range over object terms, action terms, and
object and action variables. The class of dynamic formulae φ is defined inductively using
the following grammar:

φ ::= P (x⃗) | Poss(θa) | After(θa, φ) | ¬φ | φ1 ∧ φ2 | ∃y⃗. φ.

That is, a dynamic formula (DF) can be a situation-suppressed fluent, a formula that says
that some action θa is possible, a formula that some DF holds after some action has occurred,
or a formula that can built from other DF using the usual connectives. Note that φ can
have quantification over object and action variables, but must not include quantification
over situations or ordering over situations (i.e. ⊏). We will use φ for DF.

φ[·] is defined as follows:

Definition 2.

φ[s]
def
=

P (x⃗, s) if φ is P (x⃗)

Poss(θa, s) if φ is Poss(θa)

φ′[do(θa, s)] if φ is After(θa, φ
′)

¬(φ′[s]) if φ is (¬φ′)

φ1[s] ∧ φ2[s] if φ is (φ1 ∧ φ2)

∃y⃗. (φ′[s]) if φ is (∃y⃗. φ′)

We will now present KL’s definition of causes in the SC. The idea behind how causes
are computed is as follows. Given an effect φ and scenario s, if some action of the action
sequence in s triggers the formula φ to change its truth value from false to true relative to

3While KL also study epistemic causation, we restrict our discussion to objective causality only. Also, as
usual, we will often suppress the situation argument of φ. φ[s] denotes the reintroduction of s in φ; see
below for a definition.

D, and if there are no actions in s after it that change the value of φ back to false, then this
action is an actual cause of achieving φ in s. Such causes are referred to as primary causes:

Definition 3 (Primary Cause [16]).

CausesDirectly(a, ts, φ, s)
def
= ∃sa. timeStamp(sa) = ts ∧ (S0 < do(a, sa) ≤ s)

∧ ¬φ[sa] ∧ ∀s′.(do(a, sa) ≤ s′ ≤ s ⊃ φ[s′]).

That is, a executed at time-stamp ts is the primary cause of effect φ in situation s iff a
was executed in a situation with time-stamp ts in scenario s, a caused φ to change its truth
value to true, and no subsequent actions on the way to s falsified φ.

Now, note that a (primary) cause a might have been non-executable initially. Also, a
might have only brought about the effect conditionally and this context condition might have
been false initially. Thus earlier actions on the trace that contributed to the preconditions
and the context conditions of a cause must be considered as causes as well. The following
definition captures both primary and indirect causes.4

Definition 4 (Actual Cause [16]).

Causes(a, ts, φ, s)
def
= ∀P.[∀a, ts, s, φ.(CausesDirectly(a, ts, φ, s) ⊃ P (a, ts, φ, s))

∧ ∀a, ts, s, φ.(∃a′, ts′, s′.(CausesDirectly(a′, ts′, φ, s)

∧ timeStamp(s′)= ts′ ∧ s′ < s

∧ P (a, ts, [Poss(a′) ∧After(a′, φ)], s′)

⊃ P (a, ts, φ, s))

] ⊃ P (a, ts, φ, s).

Thus, Causes is defined to be the least relation P such that if a executed at time-step ts
directly causes φ in scenario s then (a, ts, φ, s) is in P , and if a′ executed at ts′ is a direct
cause of φ in s, the time-stamp of s′ is ts′, s′ < s, and (a, ts, [Poss(a′) ∧ After(a′, φ)], s′) is
in P (i.e. a executed at ts is a direct or indirect cause of [Poss(a′)∧After(a′, φ)] in s′), then
(a, ts, φ, s) is in P . Here the effect [Poss(a′)∧After(a′, φ)] requires a′ to be executable and
φ to hold after a′.

Example. We will illustrate causation in the SC using a version of our example. Assume
a SC BAT for this domain, DSC

npp that only includes the atemporal variants of the last 3 ac-
tions, i.e. mRadiation(p), csFailure(p), and fixCS (p), the CSFailed(p, s) fluent, and the asso-
ciated initial state axioms, action precondition axioms, successor-state axioms, and unique-
names axioms. Within this framework, consider the scenario σ1 = do([mRadiation(P1),
csFailure(P1),fixCS (P1),mRadiation(P1), csFailure(P1),mRadiation(P1)], S0) and the ob-
served effect φ1 = CSFailed(P1), for power-plant P1. We can show the following.

Proposition 1.
DSC

npp |= CausesDirectly(csFailure(P1), 4, φ1, σ1).

Moreover, we can show the following result about (possibly indirect) causes.

Proposition 2.

DSC
npp |= Causes(csFailure(P1), 1, φ1, σ1)

∧ Causes(fixCS (P1), 2, φ1, σ1) ∧ Causes(csFailure(P1), 4, φ1, σ1).

4In this, we need to quantify over situation-suppressed DF. Thus we must encode such formulae as terms
and formalize their relationship to the associated SC formulae. This is tedious but can be done essentially
along the lines of [25]. We assume that we have such an encoding and use formulae as terms directly.

Explaining backwards, the second csFailure(P1) action executed at time-stamp 4 is a cause
as it is a direct cause. The fixCS (P1) action is a cause since had it not for this action, the pri-
mary cause would not have been executable (see action precondition axiom for csFailure()).
Finally, the first cooling system failure action is required for the fixCS (P1) to be executable.
Since we do not deal with secondary causes in this paper, we will not pursue this discussion
further and rather refer the interested reader to [16].

4. Primary Cause in Hybrid Dynamic Domains

We next turn our attention to causation in the HTSC. Our precise contribution here
is as follows: first, we will give a general definition of causal setting. We then consider
the case where the effect is a primitive atemporal fluent as well as the one where it only
involves a primitive temporal fluent. We discuss why KL’s definition can be adapted for
us for the former and give a new definition for the latter in terms of the former. We use
our running example to illustrate our definition. We also study some properties, including
one that identifies the conditions under which these causes persist. In the next section,
we suggest how one might extend our notion of direct cause relative to primitive temporal
fluents as effects to cover the cases where the effect is a conjunction or disjunction of two or
more primitive temporal effects (i.e. constraints on the values of primitive temporal fluents).

Hybrid Setting. We start by defining a notion of causal setting in the HTSC.

Definition 5. A hybrid temporal achievement causal setting is a tuple ⟨D, σ, φ⟩, where D
is a HTSC BAT, σ ̸= S0 is a ground situation term of the form do([α1, . . . , αn], S0) with
non-empty sequence of ground action functions α1, . . . , αn, and φ is a situation-suppressed
(possibly temporal, and in that case, time-suppressed) SC formula such that:

D |= Executable(σ) ∧ ¬φ[start(S0), S0] ∧ ¬φ[time(α1), S0] ∧ φ[start(σ), σ].

In our framework, φ is a situation- and time-suppressed HTSC formula, which is constrained
to be consistent. The exact nature of φ is irrelevant for us as we will only deal with
primitive atemporal fluents and conditions on the values of primitive temporal fluents (e.g.
coreTemp(P1) > 1000) as effects.5 Note that the above definition requires the effect φ to
be false at the beginning and at the end of the initial situation S0 and to be true when
observed at the beginning of σ.

In a hybrid domain, in general, one can query the causes of an observed effect at any
point in time within a situation σ, i.e. at any moment in between the start time and the end
time of σ, inclusive. To simplify, we assume that the query is posed relative to the starting
time of σ (as enforced by Definition 5). One can always add a subsequent dummy action
noOp (that has no effect and that is always possible) and query relative to the updated
scenario do(noOp, σ) if this is not the case.

As discussed below, a hybrid setting does not necessarily guarantee that the causes of
the associated (temporal) effect can always be computed as it might still be implicit in
the initial situation, e.g. when the context that brought about the effect was true initially
and remained true until the achievement of the effect; we will return to this issue later in
Theorem 2. One last point: when the effect is atemporal, the time arguments above are
simply ignored and the definition resembles that of a causal setting in the SC.

Atemporal Primitive Fluents as Effects. We next consider defining primary achieve-
ment cause relative to a hybrid setting, where the effect is a primitive atemporal fluent.
Since we already have a notion of time associated with every situation in the HTSC, it

5In the following, we will write φ[t, s] to denote the formula obtained from φ by restoring the appropriate
situation and time arguments into the only fluent in φ.

seems to be natural to adopt this instead of KL’s time-step. However, one problem with
this is that since actions in HTSC are instantaneous, it is possible for multiple actions to
have the same time argument, and as such the execution time time(a) of an action a cannot
be used to uniquely identify the occurrence of a on the trace. Thus, for this, we will adopt
KL’s definition of primary cause [16] given in Definition 3 above; we require that φ for our
case is some suitable subclass of HTSC formulae.

Temporal Primitive Fluents as Effects. We will give another definition of primary
achievement cause relative to a hybrid setting, but now for the case where the effect involves
a primitive temporal fluent instead. Note that for discrete effects, the primary cause (which
is an action a) brings about the effect discretely and immediately after its execution. For the
temporal case, however, the effect might be only realized after a while, and many irrelevant
actions might be executed in between. Thus while defining the primary achievement cause,
we need to talk about the achievement time t of the effect within the scenario. But, since
time is continuous and thus uncountable, it is not trivial to pinpoint t. For instance, one
cannot use a sentence such as ∃t, t′. t′ < t ∧ ¬φ[t′, σ] ∧ φ[t, σ] to reveal t within some situa-
tion σ; since time is continuous, given a time-point t, the notion of an immediate previous
time-point t′ is not well defined as there will always be another time-point in the interval
(t′, t), e.g. (t′ + t)/2. One solution to this problem is to instead consider an interval (t1, t2)
within the achievement situation over which the effect was achieved. For simplicity, t1 and
t2 can be assumed to be the starting time of situations (which can be also represented using
the time of the associated actions for non-initial situations). In our formalization, we will
thus evaluate the effect relative to such t1 and t2 to determine the “achievement situation”
of the effect, as can be seen in the definition of AchvSit(·, ·, ·) below.

The intuition behind our definition is as follows. Recall that in HTSC, the values of
temporal fluents can change when certain contexts are enabled. Contexts, which are discrete
fluents, on the other hand change due to the execution of actions. Thus when determining
the primary cause of some temporal fluent having a certain value, we need to identify the
last context γ that was enabled when the fluent acquired this value (i.e. the context γ of
the achievement situation sφ), and the action a that caused this context. Since contexts are
mutually exclusive, γ must have been the only enabled context in sφ and a must have been
the last action whose contribution brought about the temporal effect under consideration.6

In the following, we give the definition of primary cause relative to a hybrid setting
⟨D, σ, φ⟩. In this, the effect φ is a constraint on the values of a situation- and time-suppressed
primitive temporal fluent f(x⃗). Also, γf

i refers to the contexts (indexed by i) that are
associated with the temporal fluent f (see the state evolution axioms defined above).

Definition 6 (Primary Achievement Cause (Primitive Temporal Case)).

CausesDirectlyprim
temp (a, ts, φ, s)

def
= ∃sφ. AchvSit(sφ, φ, s) ∧ ∃i. CausesDirectly(a, ts, γf

i , sφ).

That is, action a executed at time-stamp ts directly causes the situation- and time-suppressed
effect formula φ in scenario s iff the achievement situation of φ in s is sφ, and a executed in
some earlier situation with time-stamp ts directly caused some relevant context γf

i for the
temporal fluent f in φ in scenario sφ.

6There can be other secondary/indirect causes, but we are only concerned with primary causes here.

ti
m
e

¬φ, sa

¬φ, sa
do(a, sa)a

φ

φ, do(a, sa)
do(b, do(a, sa)), φb

¬φ, sa

¬φ, sa
do(a, sa), φa

Figure 1. Illustration of the two cases in the definition of achievement situation.

We now give a definition for achievement situations.

AchvSit(sφ, φ, s)
def
=

([∃a, b, sa. S0 ≤ sa < do(a, sa) < do(b, do(a, sa)) ≤ s ∧ ¬φ[time(a), sa] ∧ φ[time(b), do(a, sa)]

∧ (∀s′, s′′, t′. do(a, sa) < s′ ≤ s′′ ≤ s ∧ start(s′) ≤ t′ ≤ start(s′′) ⊃ φ[t′, s′])

∧ sφ = do(a, sa)]

∨ [∃a, sa. s = do(a, sa) ∧ ¬φ[time(a), sa] ∧ φ[start(do(a, sa)), do(a, sa)] ∧ sφ = do(a, sa)]).

The achievement situation of φ in scenario s is sφ iff either (i) there are two consecutive
actions a and b and a situation sa in the scenario such that φ was false at the end of sa
right before a was executed,7 but became true by the end of situation do(a, sa) before the
execution of b, and remained true afterwards till the end of the scenario s, in which case sφ
is do(a, sa); or (ii) there is an action a and some situation sa such that φ was false at the
end of sa but became true when a happened, i.e. at the start of situation do(a, sa), which
also is the last situation of the trace s, in which case sφ is do(a, sa) (which is the same as
s). The first disjunct above accommodates cases where there are at least two actions in
the scenario, and the effect was false at the end of some situation and became true at some
point between the start and the end of the next situation, inclusive. The second one covers
the boundary case where φ was instantaneously brought about by the very last action in
the scenario. Note that the two cases above are mutually exclusive as the first requires the
occurrence of an action after the effect φ has been achieved while in the second φ is achieved
by the very last action. Figure 1 illustrates these two cases, where horizontal lines represent
action execution and vertical lines depict the passage of time within the same situation.

Example. Consider the causal setting ⟨Dnpp, φ2, σ2⟩, where φ2
def
= coreTemp(P1) > 1000

and σ2 is the scenario do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 20),fixP(P1, 26)],
S0). This is depicted in Figure 2, which also shows the temperature in each situation. Given
this, as expected we can show the following result about direct causes.

Proposition 3.

Dnpp |= CausesDirectlyprim
temp(csFailure(P1, 15), 1, φ2, σ2).

Note that although csFailure(P1, 15) is not the last action that happened before the ef-
fect φ2 became true, it is the primary cause. Put otherwise, our definition correctly
identified mRadiation(P1, 20) as one of the irrelevant actions. Indeed csFailure(P1, 15)
is the action that directly caused the context that is active in the achievement situation
S3 = do([rupture(P1, 5), csFailure(P1, 15),mRadiation(P1, 20)], S0), i.e. γ1.

7Since it is not directly possible to talk about the end time of a situation in HTSC (as the end time does
not really exist when the scenario is not known), we will use the start time of the next action to denote this.
While in the discussion, we mention that the end time of the situation comes “right before” the execution
time of the next action on the trace, note that in reality, these two times are the same.

−50◦, S0

−50◦, S0

rupture(P1, 5)
φ2 = −50◦, γ2, S1

300◦, γ2, S1

csFailure(P1, 15)
300◦, γ1, S2

800◦, γ1, S2

mRadiation(P1, 20)
800◦, γ1, S3

1000◦, φ2

1400◦, γ1, S3

fixP(P1, 26)
1400◦, γ3, σ2

Figure 2. Continuous change in temperature under relevant contexts realized by actions.

Properties. We next discuss a few general properties of our formalization. Let D in-
clude a HTSC BAT and our formalization above.

The first property states that the primary cause of a temporal effect is unique.

Theorem 1 (Uniqueness).

D |= CausesDirectlyprim
temp(a1, ts1, φ, σ) ∧ CausesDirectlyprim

temp(a2, ts2, φ, σ)

⊃ a1 = a2 ∧ ts1 = ts2.

This follows directly from Definitions 3 and 6 as by these definitions, both the achievement
situation sφ and the (discrete) direct cause are unique.

Next, we recognise that despite given a proper hybrid setting, primary causes of primitive
temporal fluents might not exist (as it may be implicit in the initial situation S0).

Theorem 2 (Implicit Primary Cause). Assume that φ is a constraint on the values of a
primitive temporal fluent f . Then we have:

D |= (ProperHTSCAchvCausalSetting(φ, σ)

∧ ∃sφ. AchvSit(sφ, φ, σ) ∧ ∃i. γf
i [sφ] ∧ (∀s′. S0 ≤ s′ ≤ sφ ⊃ γf

i [s
′]))

⊃ ¬∃a, ts. CausesDirectlyprim
temp(a, ts, φ, σ)),

where, ProperHTSCAchvCausalSetting(φ, σ)
def
=

Executable(σ) ∧ ∃a0. do(a0, S0) ≤ σ ∧ ¬φ[start(S0), S0] ∧ ¬φ[time(a0), S0] ∧ φ[start(σ), σ].

This can be proven by showing that since the context γf
i active in the achievement situation

sφ was true throughout the interval (S0, sφ), the achievement cause of γf
i in sφ simply does

not exist (recall that Definition 3 requires γf
i to be false before the action that caused it

happened).
Finally, we study the conditions under which primary achievement causes persist when

the scenario changes.

Theorem 3 (Persistence).

∀a, ts, φ, s, s∗. CausesDirectlyprim
temp (a, ts, φ, s)

∧ (∀s′, s′′, t′. s ≤ s′ ≤ s′′ ≤ s∗ ∧ start(s′) ≤ t′ ≤ start(s′′) ⊃ φ[t′, s′])

⊃ CausesDirectlyprim
temp (a, ts, φ, s

∗).

That is, if an action a executed in ts is the primary cause of an effect φ in scenario s, then a
in ts remains the primary cause of φ in all subsequent situations/scenarios s∗ if φ does not
change after it was achieved in s. This is because since the achievement situation sφ does
not change in the extended scenario, by Definition 6, neither does the primary cause of φ.

Note that this holds even when the context changes and so does the value of the associated
fluent f in φ (as long as φ itself remains unchanged).

5. Conclusion

In this paper, we proposed a formalization of primary achievement cause in hybrid dynamic
domains. To the best of our knowledge, ours is the first attempt to deal with causation in
hybrid temporal action-theoretic frameworks (the only other formal attempt to this end that
we are aware of is the work [19] discussed in the introduction; however, as we mentioned
there, that framework is not based on a proper action-theory and thus has many expressive
limitations).

Our current proposal is nonetheless limited in many ways. For instance, we only dealt
with (conditions on the values of) primitive fluents as effects. Moreover, we did not handle
indirect causes. However, our attempt shows that determining causes even under such strong
restrictions requires careful modeling and reasoning.

With some effort, our proposal can be extended to compute the primary cause of com-
pound effects, those that are built from disjunctions and conjunctions of primitive temporal
effects (i.e. conditions on primitive temporal fluents). For example, if φ is a conjunction of
the form φ1∧φ2, the action a1 executed in timestamp ts1 is the primary achievement cause
of φ1 in σ, and a2 executed in ts2 is the primary achievement cause of φ2 in σ, then one
can take the latest between a1 and a2 as the primary cause of φ in σ; this is because the
last action that contributed to the effect should be considered as the primary cause. The
case for disjunctions (i.e. when φ = φ1 ∨ φ2) is a little more trickier and simply taking the
latest cause is not adequate as the primary cause of φ will also depend on which of these two
disjuncts was actually achieved, as well as on whether both of these disjuncts were achieved
at the same time. We leave these for future work. Finally, in the future, we also plan to
extend this to discover indirect causes. This should be doable along the same lines as in [14,
16], but perhaps with the help of the newly proposed regression operator in the HTSC [20].

Acknowledgments

We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), [funding reference number RGPIN-2022-03433].

References

[1] J. Pearl. On the Definition of Actual Cause. Tech. rep. R-259. University of California Los
Angeles, 1998.

[2] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, 2000.
[3] J. Y. Halpern. “Axiomatizing Causal Reasoning”. In: Journal of Artificial Intelligence Re-

search 12 (2000), pp. 317–337.
[4] J. Y. Halpern and J. Pearl. “Causes and Explanations: A Structural-Model Approach. Part

I: Causes”. In: The British Journal for the Philosophy of Science 56.4 (2005), pp. 843–887.
[5] T. Eiter and T. Lukasiewicz. “Complexity Results for Structure-based Causality”. In: Artificial

Intelligence 142.1 (2002), pp. 53–89.
[6] M. Hopkins. “The Actual Cause: From Intuition to Automation”. PhD thesis. University of

California Los Angeles, 2005.
[7] M. Hopkins and J. Pearl. “Causality and Counterfactuals in the Situation Calculus”. In:

Journal of Logic and Computation 17.5 (2007), pp. 939–953.
[8] J. Y. Halpern. “A Modification of the Halpern-Pearl Definition of Causality”. In: Proceedings

of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015. Ed. by Q. Yang and M. J. Wooldridge. AAAI
Press, 2015, pp. 3022–3033.

[9] J. Y. Halpern. Actual Causality. MIT Press, 2016. isbn: 978-0-262-03502-6.
[10] H. A. Simon. “Causal Ordering and Identifiability”. In: Models of Discovery. Boston Studies

in the Philosophy of Science 54 (1977).
[11] C. Glymour, D. Danks, B. Glymour, F. Eberhardt, J. D. Ramsey, R. Scheines, P. Spirtes,

C. M. Teng, and J. Zhang. “Actual Causation: A Stone Soup Essay”. In: Synthese 175.2
(2010), pp. 169–192.

[12] F. Leitner-Fischer and S. Leue. “Causality Checking for Complex System Models”. In: Verifi-
cation, Model Checking, and Abstract Interpretation, 14th International Conference, VMCAI
2013, Rome, Italy, January 20-22, 2013. Proceedings. Ed. by R. Giacobazzi, J. Berdine, and
I. Mastroeni. Vol. 7737. Lecture Notes in Computer Science. Springer, 2013, pp. 248–267.

[13] V. Batusov and M. Soutchanski. “Situation Calculus Semantics for Actual Causality”. In:
Proceedings of the Thirteenth International Symposium on Commonsense Reasoning, COM-
MONSENSE 2017, London, UK, November 6-8, 2017. Ed. by A. S. Gordon, R. Miller, and
G. Turán. Vol. 2052. CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[14] V. Batusov and M. Soutchanski. “Situation Calculus Semantics for Actual Causality”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018. Ed. by S. A. McIlraith and K. Q. Weinberger.
AAAI Press, 2018, pp. 1744–1752.

[15] S. M. Khan and M. Soutchanski. “Necessary and Sufficient Conditions for Actual Root
Causes”. In: ECAI 2020 - 24th European Conference on Artificial Intelligence, 29 August-
8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including
10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020). Ed. by G.
De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarín, and J. Lang. Vol. 325.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2020, pp. 800–808.

[16] S. M. Khan and Y. Lespérance. “Knowing Why - On the Dynamics of Knowledge about
Actual Causes in the Situation Calculus”. In: AAMAS ’21: 20th International Conference
on Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, May 3-7,
2021. Ed. by F. Dignum, A. Lomuscio, U. Endriss, and A. Nowé. ACM, 2021, pp. 701–709.

[17] S. M. Khan and M. Rostamigiv. “On Explaining Agent Behaviour via Root Cause Analysis:
A Formal Account Grounded in Theory of Mind”. In: ECAI 2023 - 26th European Conference
on Artificial Intelligence, September 30 - October 4, 2023, Kraków, Poland. Ed. by K. Gal,
A. Nowé, G. J. Nalepa, R. Fairstein, and R. Radulescu. Vol. 372. Frontiers in Artificial
Intelligence and Applications. IOS Press, 2023, pp. 1239–1247.

[18] V. Yazdanpanah, E. H. Gerding, S. Stein, M. Dastani, C. M. Jonker, T. J. Norman, and
S. D. Ramchurn. “Reasoning about responsibility in autonomous systems: challenges and
opportunities”. In: AI Soc. 38.4 (2023), pp. 1453–1464.

[19] J. Y. Halpern and S. Peters. “Reasoning About Causal Models with Infinitely Many Vari-
ables”. In: Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022.

[20] V. Batusov, G. De Giacomo, and M. Soutchanski. “Hybrid Temporal Situation Calculus”.
In: Advances in Artificial Intelligence - 32nd Canadian Conference on Artificial Intelligence,
Canadian AI 2019, Kingston, ON, Canada, May 28-31, 2019, Proceedings. Ed. by M. Meurs
and F. Rudzicz. Vol. 11489. Lecture Notes in Computer Science. Springer, 2019, pp. 173–185.

[21] V. Batusov, G. De Giacomo, and M. Soutchanski. “Hybrid temporal situation calculus”.
In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019,
Limassol, Cyprus, April 8-12, 2019. Ed. by C. Hung and G. A. Papadopoulos. ACM, 2019,
pp. 1162–1164.

[22] R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. Cambridge, MA, USA: MIT Press, 2001. isbn: 9780262182188.

[23] J. McCarthy and P. J. Hayes. “Some Philosophical Problems from the Standpoint of Artificial
Intelligence”. In: Machine Intelligence 4 (1969), pp. 463–502.

[24] H. J. Levesque, F. Pirri, and R. Reiter. “Foundations for the Situation Calculus”. In: Electronic
Transactions on Artificial Intelligence (ETAI) 2 (1998), pp. 159–178.

[25] G. De Giacomo, Y. Lespérance, and H. J. Levesque. “ConGolog, A Concurrent Programming
Language based on the Situation Calculus”. In: Artificial Intelligence 121.1-2 (2000), pp. 109–
169.

	1. Introduction
	2. Preliminaries
	The Situation Calculus
	Hybrid Temporal Situation Calculus

	3. Actual Achievement Cause in the SC
	4. Primary Cause in Hybrid Dynamic Domains
	5. Conclusion
	Acknowledgments
	References
	References

