On Explaining Agent Behaviour via Root Cause Analysis:
A Formal Account Grounded in Theory of Mind

Shakil M. Khan #* and Maryam Rostamigiv?

2University of Regina, Saskatchewan, Canada

Abstract. Inspired by a novel action-theoretic formalization of ac-
tual cause, Khan and Lespérance (2021) recently proposed a first ac-
count of causal knowledge that supports epistemic effects, models
causal knowledge dynamics, and allows sensing actions to be causes
of observed effects. To date, no other study has looked specifically at
these issues. But their formalization is not sufficiently expressive to
model explanations via causal analysis of mental states as it ignores
a crucial aspect of theory of mind, namely motivations. In this paper,
we build on their work to support causal reasoning about conative
effects. In our framework, one can reason about causes of motiva-
tional states, and we allow motivation-altering actions to be causes
of observed effects. We illustrate that this formalization along with a
model of goal recognition can be utilized to explain agent behaviour
in communicative multiagent contexts.

1 Introduction

Actual causality is a long-standing philosophical problem that is fun-
damental to the task of reasoning about and analysing observations.
Given a narrative or history of events and an observed effect, solving
this problem involves finding the events or actions from this history
that are responsible for producing this effect, i.e. those that caused the
effect. Also known as token-level causality, this problem is different
from general or type-level causality, where the task is to discover uni-
versal causal mechanisms. Actual causality plays a significant role in
reasoning about agents. For instance, causal reasoning can be used
to explain the behaviour of a group of agents, e.g. via causal analysis
of the mental states produced by this behaviour. These mental states
may include beliefs and goals of the agents whose actions are the
cause of the observed behaviour as well as those of others’.

Pearl [31, 32] was a pioneer in computational enquiry into actual
causality. This line of research was later continued by Halpern [11],
Halpern and Pearl [14], and others [7, 16, 17, 12, 13]. This “HP ap-
proach” is based on the concept of structural equations [40]. HP fol-
lows the Humean counterfactual definition of causation, which states
that “an outcome B is caused by an event A” is the same as saying
that “had A never occurred, B never had existed”. This definition suf-
fers from the problem of preemption': it could be the case that in the
absence of event A, B would still have occurred due to another event,
which in the original trace was preempted by A. HP address this
by performing counterfactual analysis only under carefully selected
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1 Preemption happens when two competing events try to achieve the same
effect, and the latter of these fails to do so, as the earlier one has already
achieved the effect.

contingencies, which suspend some subset of the model’s mecha-
nisms. While their inspirational early work was shown to be useful
for some practical applications, their approach based on Structural
Equations Models (SEM) has been criticized for its limited expres-
siveness [16, 17, 10], and researchers have attempted to expand SEM
with additional features, e.g. [23]. Note that despite recently reported
progresses (e.g. [15]), many of these expressive limitations remain.
Also, while there has been much work on actual causality, the vast
majority of the work in this area has focused on defining causes from
an objective standpoint.

In recent years, researchers have become increasingly interested
in studying causation from the perspective of agents. Among other
things, this is useful for defining important concepts such as respon-
sibility and blame. Inspired by a novel action-theoretic formalization
of actual causation [3], Khan and Lespérance [22] (KL, henceforth)
recently proposed a first account of causal knowledge that supports
epistemic effects, models causal knowledge dynamics, and allows
sensing actions to be causes of observed effects. To date, no other
study has looked specifically at these issues. But their formalization
is not sufficiently expressive to model explanations via causal anal-
ysis of mental states as it ignores a crucial aspect of theory of mind,
namely motivations. In this paper, we build on their work to support
causal reasoning about conative effects. In our framework, one can
reason about causes of motivational states, and we allow motivation-
altering actions to be causes of observed effects. We illustrate that
this formalization along with a model of goal recognition can be uti-
lized to explain agent behaviour.

Our contribution in this paper is three-fold. First, we show how
causal reasoning about goals/intentions can be modeled. Secondly,
using an example, we illustrate how this formalization along with a
model of goal recognition can be used to explain agent behaviour
in communicative multiagent contexts. The generated explanations
include both direct causal explanations as well as higher-order and
more useful indirect explanations. The latter is grounded in (multia-
gent) theory of mind-based causal reasoning. Specifically, for this we
define explanations as causes of intentions behind other explanations.
Finally, while doing this, we extend a previously proposed account
of goal change to deal with the request communicative action.

The paper is organized as follows. In the next section, we outline
the situation calculus, a model of knowledge therein, and the formal-
ization of infinite paths in the situation calculus, and introduce our
running example. In Section 3, we discuss the formalization of pri-
oritized goals and intentions, and propose a modification to the goal
dynamics in [19] to deal with requests. Based on this, in Section 4,
we present our logic of actual cause within the situation calculus that



can deal with conative effects. In Section 5, we illustrate how our for-
malization can be utilized to explain agent behaviour. In Section 6,
we prove some intuitive properties of our formalization. We conclude
with some discussion in Section 7.

2 Action and Knowledge

The Situation Calculus Our base framework for modeling causal
reasoning is the situation calculus (SC) [28] as formalized in [34].
Here, a possible state of the domain is represented by a situation.
The initial state is denoted by So. There is a distinguished binary
function symbol do where do(a, s) denotes the successor situation
to s resulting from performing the action a. Thus the situations can
be viewed forming a tree, where the root of the tree is an initial situ-
ation and the arcs represent actions. As usual, a relational/functional
fluent takes a situation term as its last argument. There is a special
predicate Poss(a, s) used to state that action a is executable in situ-
ation s. We will use the abbreviation do([au1, - - - , ], So) to repre-
sent the situation obtained by consecutively performing a1, - -« , an
starting from Sp. Also, the notation s = s’ means that situation s’
can be reached from situation s by executing a sequence of actions.
s C s’ is an abbreviation of s — s’ V s = s’. s < s’ is an abbrevia-
tion of s C s’ A executable(s’), where ezecutable(s) is defined as
Va',s'. do(a’,s') C s D Poss(a’,s’), i.e. every action performed
in reaching situation s was possible in the situation in which it oc-
curred. s < s’ is an abbreviation of s < s’ V s = 5.

Our framework uses an action theory D that includes the fol-
lowing set of axioms:? (1) action precondition axioms (APA), one
per action a characterizing Poss(a, s), (2) successor state axioms
(SSA), one per fluent, that succinctly encode both effect and frame
axioms and specify exactly when the fluent changes, (3) initial state
axioms describing what is true initially, (4) unique names axioms for
actions, and (5) domain-independent foundational axioms describing
the structure of situations [26].

Knowledge in the Situation Calculus Following [30, 35],
we model knowledge using a possible worlds account adapted to
the SC. There can now be multiple initial situations. Init(s) means
that s is an initial situation. The actual initial state is denoted by
So. K(d,s',s) is used to denote that in situation s, the agent d
thinks that it could be in situation s’. Using K, the knowledge of an
agent d is defined as:> Know(d, ®,s) £ Vs'. K(d,s',s) D ®[s'],

i.e. the agent d knows @ in s if ® holds in all of its K -accessible

situations in s. We also use the abbreviations Kwhether(d, ®, s) <

Know(d, ®,s) V Know(d,~®, s), i.e. d knows whether ® holds
in s and Kref(d,0,s) = 3t. Know(d,6 = t,s), i.e. it knows
who/what 6 refers to in s. K is constrained to be reflexive and
Euclidean (and thus transitive) in the initial situation to capture the
fact that the agent’s knowledge is true, and that it has positive and
negative introspection.

In our framework, the dynamics of knowledge is specified using a
SSA for K that supports knowledge expansion as a result of sensing
actions as well as communication actions. The information provided
by a binary sensing action is specified using the predicate SF'(a, s).
Similarly for non-binary sensing actions, the term sff (a, s) is used to

2 We will be quantifying over formulae, and thus assume that D includes
axioms for encoding of formulae as first order terms, as in [38].

3 The state formula ® can contain a placeholder now in the place of the situa-
tion terms. We often suppress now when the intent is clear from the context.
Also, ®[s] denotes the formula obtained by restoring the situation argument
s into all fluents in .

denote the sensing value returned by the action. These are specified
using sensed fluent axioms; see [25] for details. Shapiro et al. [37] and
later Lespérance [24] extended the SSA for K to support variants of
the ‘inform’ communicative action. We will adopt the variant pro-
posed in KL [18]. The preconditions of inform (inf, agt, ®), which
can be used by inf to inform agt that ®, are as follows:

Poss(inform(inf, agt, ®),s) =
Know(inf, ®, s) A ~Know(inf, Know(agt, ®, now), s).

We assume that its effects has been specified as in KL [18]. As shown
in [35], the constraints on K then continue to hold after any sequence
of actions since they are preserved by the SSA for K. A similar result
can be shown for the KL [18] variant of the SSA for K.

Thus to model knowledge, we will use a theory that is similar to
before, but with modified foundational axioms to allow for multiple
initial epistemic states. Also, action preconditions can now include
knowledge preconditions and initial state axioms can now include
axioms describing the epistemic states of the agents. Finally, the
aforementioned axioms for K and inform are included. See [34]
and [18] for details of these. Note that like [35], we assume that
actions are fully observable (even if their effects are not). This can
be generalized as in [1].

Paths in the Situation Calculus Following KL [21], we will
formalize the sort of paths in the SC. A path is essentially an infinite
sequence of situations, where each situation along the path can be
reached by performing some executable action in the preceding
situation. We will use Starts(p, s) to denote that s is the earliest
situation on path p and OnPath(p,s) to denote that s is on p.
Suffiz(p’, p, s) means that path p’ that starts with situation s is a
suffix of p. KL [20] showed how one can interpret arbitrary CTL"*
formulae within SC with paths.* We assume that our theory D
includes the axiomatization for paths.

We will use uppercase and lowercase Greek letters for state for-
mulae (i.e. situation-suppressed SC formulae) and path formulae, re-
spectively. These are inductively defined as follows:

D :u=P(Z) | Ap | PAD | =P | Va. @
p=P[PNG| ¢ |Ve. ¢| O ¢U P

Here, © and x are object terms, P(Z) is an arbitrary situation-
suppressed SC formula, and A¢ (i.e. over all paths ¢) is a path quan-
tifier. Also, ()¢ means that ¢ holds next over a path while ¢ U
stands for ¢ until 1. Other logical connectives and quantifiers such
as V, D, =, 3 and CTL" operators such as E¢, Oop, ¢ B 1), etc. are
handled as the usual abbreviations (see below).

Like now in state formulae, path formulae ¢ can also contain
an often-suppressed path placeholder path in the place of the path
terms. The function [-] translates the above-defined formulae into
formulae of the SC with paths. We write ®[s] (and ¢[p]) to mean
that state formula ® (and path formula ¢) holds in situation s (and
over path p, respectively). In the following, we give the definition of

4 CTL* [8] is a well-known branching-time temporal logic. It is a superset of
Linear Temporal Logic (LTL) [33] and Computational Tree Logic (CTL)
[5], and it allows arbitrary mixing of temporal operators and path quanti-
fiers.



[-] from [20].
P[s]= P
Ags] = Vp. Starts(p, s) D o[p],
(@A W)[s] = 2s] A ¥[s],
—®[s] = ~([s]),

(Vz. ®)[s] £ Va.(®[s]),

[s], where P is a situation suppressed SC formula,

def

D[p] = 3s. Starts(p, s) A P[s],

(@A) Ip] = ¢lp] A L],

~¢lp] = ~(4[p]);

(Va. ¢)[p] = Va.(4[p]),

O9¢[p] £ 3s,a,p. Starts(p, s) A Suffiz(p’, p, do(a, s)) A [p'],

(U P)[p] £ s, s, p'. Starts(p, s) A Suffiz(p’,p,s’) Ap[p']
A (Vs p". s 25" < s A Suffiz(p”,p,s™) D olp°]).

Thus, the situation suppressed situation calculus formula P holds in
situation s if P[s] is true, i.e. the formula obtained by reintroducing
situation s in P holds in s. A¢[s] holds if ¢ holds over all the paths in
the future of s. ¢ holds next over a path p (i.e. O¢[p]) if ¢ holds over
the suffix of p that starts with the successor to the starting situation of
p. ¢ until ¢ holds over a path p (i.e. (¢ U )[p]) if there is a suffix
p’ of p that starts with s’, 1) holds over p’, and for all suffixes p* of
p that start with an earlier situation s* than s’ (i.e. s* < s), ¢ holds
over p*. The rest are self-explanatory.

As mentioned above, other CTL* operators can be defined as usual
abbreviations, e.g. over some path ¢ (denoted by E¢), eventually ¢
(denoted by <o), always ¢ (denoted by O¢), ¢ unless 1 (denoted by
& W ), ¢ before ¢ (denoted by ¢ B 1), etc.:

E¢[s] < - A=¢[s],

O¢lp] = (True U ¢)[p],

0e[p] = ~0-¢[p],

(6 W )Pl = (6 U ¥) VO A ),
(6 BY)[p] = ~(=6 U ¢)[p].

We will use « and o, possibly with decorations, to represent
ground action and situation terms, respectively. Finally, we will use
uppercase Latin letters for ground terms, and lowercase Latin letters
for variables.

Example For our running example, we consider a couple of
simple rescue drone agents D1 and Ds, a manager agent D, and
their flight paths from one location to another. At anytime, an
agent can be in any of the four locations L, Ly, L1, and L. The
geometry of the flight paths is captured using the non-fluent relation
Route(l,1"), which states that there is a flight path from location
I to I’ (throughout, we assume that free variables are universally
quantified from the outside):’

(a).Route(l,IN=[(l=Ls ANl' = L1)vV(I = L Al' = LY)
V=L Al'=Ly) Vv (=LAl = Lg)).

The controller agent D, is in charge of the overall mission and warns
about potentially unsafe routes. Besides the inform communicative

5 We assume that all agents know all non-fluent facts.

action mentioned above, there are three additional actions in this
domain. Action takeOff (d,l) can be used by drone d to take off
from location I, flyTo(d,1,1’) takes d from [ to I, and land(d,1)
makes d land at [. There are four fluents in this domain, At(d, !, s),
Flying(d, s), Vis(d,l,s), and T'Storm(l, s), representing that d is
located at [ in situation s, that d is flying in s, that d has visited [ in
s, and that there is an ongoing thunderstorm at [ in s.
The action preconditions in this domain are as follows:

(b). Poss(takeOff (d,l),s) = At(d,l,s) AN ~Flying(d, s),
(c). Poss(flyTo(d,1,1'),s) = At(d,l,s) A Flying(d, s)

A Route(l,1') A ~Know(d, TStorm(l'), s),
(d). Poss(land(d,l), s) = At(d,l,s) A Flying(d, s).

Thus, e.g., (c) states that a drone agent d can fly from locations [ to I’

in situation s iff it is located at [ in s, it is flying in s, there is a route

from [ to I’, and it does not know that there is a storm at I’ in s.
Moreover, the SSA for the above fluents are as follows.

(e). At(d,l,do(a,s)) = [3'. a = flyTo(d,l',1)

V (At(d,1,8) A=3'. a = flyTo(d,1,1"))],
(f). Flying(d,do(a, s)) = [3l. a = takeOff (d,1)

V (Flying(d, s) A —=3l. a = land(d,1))],
(9). Vis(d,l,do(a,s)) =

. a= flyTo(d,I',1) v Vis(d, 1, s),
(h). TStorm(l,do(a, s)) = TStorm(l, s).

Thus, e.g., Axiom (e) states that d is at location [ after executing
action «a in situation s (i.e. in do(a, s)) iff a refers to d’s action of
flying from some location !’ to I, or d was already at ! in s and a is not
its action of flying to a different location {’. Note that, for simplicity,
we essentially treat 7'Storm in (h) as a non-fluent.

Initially, drone D is at location L, is not flying, and has only
visited L, and it knows these facts. Moreover, it does not know that
there is a storm at location L, but knows that there are no storms
at L and Lg4. There is indeed a thunderstorm at location L1 and the
controller agent D, knows this. Finally, D. does not know however
that the other agents know this fact. These are captured using the fol-

lowing initial state axioms (note that Know(d, ®(now), s) D ®[s]):
). Know(Dy, At(D1, L), So),
j). Know(D1, ~Flying(D1), So),
k). Know(D1,Vl. Vis(D1,1) =1 = Ls, So),

m). Know(D1,~TStorm(L}), So),
n). Know(D1,—~TStorm(Lq), So),
0). Know(D., TStorm(L1), So),
).Vd. d # D. D
—Know(D., Know(d, TStorm (L)), So)-

(
(
(
(l). =Know(D1, TStorm(L1), So),
(
(
(
(

p

3 Formalizing Goals and Intentions

To model conative effects in the SC, we adopt the expressive formal-
ization of prioritized goals (p-goals) and intentions proposed by KL
[19]. In this framework, each p-goal is specified by its own acces-
sibility relation G. To deal with multiple agents, we modify KL’s
proposal by adding an agent argument for all goal-related predi-
cates and relations; usually the first argument for this. Given agent



d, a path p is G-accessible at priority level n in situation s, de-
noted by G(d, p, n, s), iff the goal of d at level n is satisfied over
p and p starts with a situation that has the same action history as
s. The latter requirement ensures that the agent’s p-goal-accessible
paths reflect the actions that have been performed so far. A smaller
n represents higher priority, with 0 being the highest priority level.
Thus the set of p-goals are totally ordered according to priority.
We say that d has the p-goal that ¢ at level n in situation s iff
¢ holds over all paths that are G-accessible for d at n in s, i.e.
PGoal(d, ¢,n,s) = Vp. G(d,p,n,s) D ¢[p].

We assume that a domain theory D for our framework also in-
cludes the domain-dependent initial goal axioms (see below) and the
domain-independent axioms and definitions that appear throughout
this paper. As KL, we allow the agent to have infinitely many goals,
some of which can be left unspecified.

For instance, assume that initially, our drone agent D1 has the fol-
lowing two p-goals: ¢o = O At(D1, Lq), i.e. that it is eventually at
Lg, and d)1 = ViS(Dl, Ll) B ViS(Dl, Ld), i.e. that it visits Ly
before it visits Lg, at level 0 and 1, respectively. Also, D, does not
have any initial p-goals. Then the initial goal hierarchy of D; and D.
can be specified using the following axioms:

(q). Init(s) D

((G(D1,p,0,s) = 3s’. Starts(p,s’) A Init(s") A ¢o[[p])

A (G(D1,p,1,5) = 3s'. Starts(p, s') A Init(s") A ¢1[p])),
(r). Init(s) An>2D

(G(D1,p,n,s) = 3s’. Starts(p, s') A Init(s")),
(s). Init(s) Amn>0D

(G(De, p,n,s) = 3s". Starts(p,s’) A Init(s")).

(g) specifies the p-goals ¢q, ¢1 (from highest to lowest priority) of
D in the initial situations, and makes G(D1, p, n, s) true for every
path p that starts with an initial situation and over which ¢,, holds, for
n = 0, 1; each of them defines a set of initial goal paths for a given
priority level, and must be consistent. (r) makes G(D1, p, n, s) true
for every path p that starts with an initial situation for n > 2. Thus at
levels n > 2, D has the trivial p-goal that it be in an initial situation.
The case for D, is similar.

Assume that Dy, denotes our theory for the drone domain. Then
in our example, we can show the following:

Proposition 1.

Forn < 2,

Dar = PGoal(D1, ¢n A Starts(s) A Init(s),n, So).
Forn > 2,

Dar = PGoal(Dy, Starts(s) A Init(s),n, So).

Since not all G-accessible paths are realistic in the sense that they
start with a K -accessible situation, to filter the unrealistic paths out,
KL defined realistic p-goal accessible paths:

Gr(d,p,n,s) o G(d,p,n,s) A3s'. Starts(p,s’) AN K(d,s', s).

G r prunes out the paths from G that are known to be impossible, and
since intentions are defined in terms of realistic p-goals, this ensures
that these are realistic.

Using realistic p-goals-accessible paths, KL defined intentions as
the realistic and maximal consistent prioritized intersection of the
agent’s goal hierarchy. First they specify all paths p that are in this

prioritized intersection Gn (d, p,n, s):°

Gn(d,p,n,s) =

if (n = 0) then
if 3p’. Gr(d,p’, n, s) then Gr(d,p,n, s)
else 3s’. Starts(p,s’) A K(d,s', s)

else
if 3p’.(Gr(d,p’,n,8) AGn(d,p',n —1,5))

then (Gr(d,p,n,s) A Gn(d,p,n —1,5))

else Gn(d,p,n —1,s).

Using this, they defined what it means for an agent to have an inten-
tion at some level n:’

Int(d7 d)a n, S) d:ef Vp Gﬁ(dapv n, S) ) ¢[[p]]7

i.e. an agent d has the intention at level n that ¢ in situation s if ¢
holds over all paths that are in the prioritized intersection of d’s set of
G r-accessible paths up to level n in s. Finally, intentions are defined
in terms of intentions at n:

Int(d, ¢, s) £ vn. Int(d, ¢, n, s),
i.e. the agent d has the intention that ¢ in s if for any level n, ¢ is d’s
intention at n in s.
In our example, given the axioms above, since initially ¢o and ¢1
are both realistic and are consistent with each other, we can show that
initially D1 has the intention that ¢ and that ¢:

Proposition 2.
Dar ': Int(Dl, do N ¢1, So)

Goal Dynamics An agent’s goals change when its knowledge
changes as a result of the occurrence of an action, including exoge-
nous events, or when it adopts or drops a goal. KL. showed how this
can be formalized by specifying how p-goals change. Intentions are
then computed using realistic p-goals in every new situation as above.

Since for our example we only need to model cooperative agents
that always respect the controller agent’s requests, to simplify, we
will modify KL’s framework slightly by introducing a request com-
municative action and by getting rid of the actions for goal adoption
and dropping. req(d, d’, ¢) can be used by an agent d to request to
adopt a p-goal ¢ to another agent d’. The APA for this is as follows:

Poss(req(d,d’, $),s) =
—Int(d,—=3s’,p’. Starts(s') A
Suffiz(p', do(req(d, d', ¢),5")) A ¢[P], 5)
That is, an agent d can request another agent d’ to adopt the p-goal
that ¢ if d does not intend in s that it is not the case that it executes
the req action next and ¢ holds afterwards.

In the following, we specify the dynamics of p-goals by giving the
modified SSA for G and discuss each case, one at a time:

G(d,p,n,do(a, s)) =
vd', ¢.(a # req(d’,d, $) A Progressed(d,p,n,a,s))
vV 3d', ¢.(a = req(d’,d, $) A Requested(d,p,n,a, s, d)).

6 The construct if ¢ then J§; else ds is an abbreviation for (¢ D d1) A
(—¢ D 62).
7 KL used the term “chosen goals” (C-Goals) for this.



The overall idea for this is as follows. First of all, to handle the occur-
rence of a non-request (i.e. a regular or a request not directed to d) ac-
tion a, we progress all of d’s (G-accessible paths to reflect the fact that
a has just happened; this is done using the Progressed(d, p,n, a, s)
construct, which replaces each of d’s G-accessible path p’ with start-
ing situation s’, by its suffix p provided that it starts with do(a, s’):

Progressed(d,p,n,a, s) 3y 4. G(d,p',n,s)
A Starts(p’, s") A Suffiz(p, p’, do(a, s')).

Any path over which the next action performed is not a is eliminated
from the respective G-accessibility level for d.

Secondly, to handle the request of a p-goal ¢ directed to d, we add
a new p-goal level containing the requested p-goal ¢ to d’s goal hi-
erarchy at the highest priority by modifying the G-relation accord-
ingly.® The G-accessible paths for d at level O are the ones that
share the same history with do(a, s) and over which ¢ holds. The
G-accessible paths for d at all levels below 0 are the ones that can
be obtained by progressing the level immediately above it. Thus the
agent d acquires the p-goal that ¢ at the highest priority level 0, and
all the p-goals in s are pushed down one level in the hierarchy.

Requested(d,p,n, a, s, ¢) S
if (n = 0) then
3s’. Starts(p,s’) A SameHist(s', do(a, s)) A ¢[p]
else Progressed(d,p,n —1,a,s).

In our example, we can show that the agent D; will have the
intention that & Vis(Ds, L}) after D; takes off from L,, D.
informs D; that there is a thunderstorm at L, and D. re-
quests D; to eventually visit L}, starting in Sp, i.e. in situa-
tion Ss = do([takeOff (D1, Ls); inform(D., D1, TStorm (L1));
req(De, D1, < Vis(D1, L}))], So); thus:

Proposition 3.
Dar = Int(D1, O Vis(Dy, LY), Sa).

But D; will not have the intention that ¢ as it has become impos-
sible for D to visit L1 due to its knowledge of the thunderstorm at
Ly, ie.:

Proposition 4.
Ddr ): —‘Int(Dl, d)l, Sg)

Proving the above two propositions involve progressing D1’s G-
accessible paths using the SSA for G and then recomputing its in-
tentions in Ss using the definition of Int and the axiom for G.

4 Handling Conative Effects

Given a trace of events, actual achievement causes are the events
that are behind achieving an effect.” To formalize reasoning about
epistemic effects, KL [22] introduced the notion of epistemic dy-
namic formulae in the SC. An effect in their framework is thus an

8 For simplicity, we assume that the requested goal is always adopted as the
highest priority goal. Other sophisticated models, e.g. one where the re-
questee adopts the requested goal only if it is from a trusted source, it is
consistent with its own set of core goals, and at just below these core goals,
could have been modeled as easily.

9 We do not conceptually distinguish between actions and events.

epistemic dynamic formula. We will extend this notion to that of in-
tentional dynamic formulae ¢ to deal with conative effects (see be-
low). Given an effect ¢, the actual causes are defined relative to a
narrative (variously known as a scenario or a trace) s. When s is
ground, the tuple (p, s) is often called a causal setting [3]. Also,
it is assumed that s is executable, and ¢ was false before the ex-
ecution of the actions in s, but became true afterwards, i.e. D =
ezecutable(s) A —p{root(s)) A p(s), where root(s) = root(s'), if
Ja’. s = do(a’, s'), and root(s) = s, otherwise. Here ((s) denotes
the formula obtained from ¢ by restoring the appropriate situation
argument into all fluents in ¢ (see Definition 2).

Note that since all changes in the SC result from actions, the poten-
tial causes of an effect ¢ are identified with a set of action terms oc-
curring in s. However, since s might include multiple occurrences of
the same action, one also needs to identify the situations where these
actions were executed. To deal with this, KL required that each situ-
ation is associated with a time-stamp. Since in the context of knowl-
edge, we will have different K -accessible situations where an action
occurs, using time-stamps provides a common reference/rigid desig-
nator for the action occurrence. The initial situations start at time O
and each action increments the time-stamp by one. Thus, our theory
includes the following axioms:

Init(s) D time(s) =0,
Ya,s,t. time(do(a, s)) =t = time(s) =t — 1.

With this, causes in this framework is a non-empty set of action-time-
stamp pairs derived from the trace s given (.

We now introduce our notion of intentional dynamic formulae (IF,
henceforth):

Definition 1. Let %, 0,, and § respectively range over object terms,
action terms, and object and action variables. The class of situation-
suppressed intentional dynamic formulae ¢ is defined inductively us-
ing the following grammar:

¢ u= P(Z) | Poss(0a) | After(0a,¢) | =@ [ ¢1 A @2
| 37. ¢ | Know(agt, ) | Int(agt, ).

That is, an IF can be a situation-suppressed fluent, a formula that
says that some action 0, is possible, a formula that some IF holds
after some action has occurred, a formula that can built from other
IF using the usual connectives, or a formula that the agent knows
that some IF holds or intends to bring about some path formula .
Note that ¢ can have quantification over object and action variables,
but must not include quantification over situations or ordering over
situations (i.e. ) or arbitrary K or G-relations, i.e. those that do not
come from the expansion of Know/Int. We will use ¢ for IF.

Note that the argument of Int in the above inductive definition is
a path formula 7). Thus to allow for IF in the context of Int, we need
to redefine state formulae ® to include IF ¢:

O :=P(Z) | Ap | PAD | =D | Vz. D | .

Also, the following addition to the definition of ®[-] is needed:

def

O[s] = p(s), if @ is of the form ¢.

We define ¢(-) as follows:



Definition 2.

P(Z,s)
Poss(0q, s)
¢/ (do(Ba, 5))
a ) 2(#'(s))

if pis P(Z)

if o is Poss(6a)
if @ is After(0q,¢")
if o s (')

P1(s) A p2(s) if pis (p1 A g2)
3. (¥'(s)) if pis (37. ¢')

Vs'. K(d,s',s) D (¢’ (s')) if pis Know(d, ")
Vn. Int(d,,n,s) if pis Int(d, ).

We will now present the definition of causes in the SC. The idea
behind how causes are computed is as follows. Given an effect  and
scenario s, if some action of the action sequence in s triggers the
formula ¢ to change its truth value from false to true relative to D,
and if there are no actions in s after it that change the value of ¢ back
to false, then this action is an actual cause of achieving ¢ in s. Such
causes are referred to as primary causes: '

Definition 3 (Primary Cause).

def

CausesDirectly(a,t, o, s) =
dsq. time(sa) =t A (ro0t(s) < do(a, sa) < s)
A —@(sq) AVs'.(do(a, sqs) < 8" < 5D p(s)).

That is, a executed at time ¢ is the primary cause of effect ¢ in situa-
tion s iff a was executed in a situation with time-stamp ¢ in scenario
s, a caused ¢ to change its truth value to true, and no subsequent
actions on the way to s falsified ¢.

Now, note that a (primary) cause a might have been non-
executable initially. Also, a might have only brought about the ef-
fect conditionally and this context condition might have been false
initially. Thus earlier actions on the trace that contributed to the pre-
conditions and the context conditions of a cause must be considered
as a cause as well. The following definition captures both primary
and indirect causes. !

Definition 4 (Actual Cause [22]).

def

Causes(a,t,p,s) =
VP.[Va,t, s, ¢.(CausesDirectly(a, t, p,s) D P(a,t,p,s))
AVa,t, s, ¢.(3d,t, s".(CausesDirectly(a’ ', p, s)
Atime(s)=t' As' < s
A P(a,t,[Poss(a’) A After(a’, v)], s')
D P(a,t,¢,s))
1 D P(a,t,,s).
Thus, Causes is defined to be the least relation P such that if a ex-
ecuted at time ¢ directly causes ¢ in scenario s then (a,t, ¢, s) is
in P, and if o’ executed at ¢’ is a direct cause of ¢ in s, the time-
stamp of s’ is t’, s’ < s, and (a, t, [Poss(a’) A After(a’, )], s) is
in P (i.e. a executed at ¢ is a direct or indirect cause of [Poss(a’)
A After(a’, )] in s'), then (a,t,p,s) is in P. Here the effect

10 Definition 3 is a slightly generalized definition than that of [22], where the
authors used S instead of oot (s).

1 In this, we need to quantify over situation-suppressed IF. Thus we must
encode such formulae as terms and formalize their relationship to the as-
sociated SC formulae. This is tedious but can be done essentially along the
lines of [9]. We assume that we have such an encoding and use formulae
as terms directly.

[Poss(a’) A After(a’, )] requires a to be executable and  to hold
after a’.

With these simple modifications, the framework is now
capable of dealing with conative effects. To see this, con-
sider the following scenario o in our example, where ¢ =
do([takeOff (D1,Ls); inform(D¢,D1,TStorm(L1)); req(De,D1,
OVis(D1,LY));  inform(D., D2, TStorm(L1)); req(De, D2,
OViS(DQ,Lll)); ﬂyTo(Dl,LS,L’I); ﬂyTO(DhL,l,Ld)LSo).
There are 7 actions in this scenario. For convenience, we will use &’;
to denote the first ¢ actions in this trace, and so do([as], So) is the
situation obtained from executing the first 5 actions starting in So.
Now assume that we want to reason about the causes of the effect
p1 = Int(D1,< Vis(D1, L})) in scenario o1 = do([a5], So))-
Then we can show that:

Proposition 5.
Dy |= Causes(req(D., Dy, Vis(D1, L)), 2, 1, 01),

i.e. as expected, D.’s request to D; to eventually visit L} that was
executed at time 2 is the cause of D1 ’s intention that & Vis(Dy, L}).

5 Reasoning about Agent Behaviour

We are now ready to formalize reasoning about agent behaviour via
causation. Just like causes, an explanation in our framework is also
modeled using an action-time-stamp pair (a, t). Agent behaviour, on
the other hand, is captured using a situation s and relative to an obser-
vation ¢. For this, we use the predicate Explains(a,t, ¢, s), which
means that the action a executed at time ¢ explains the behaviour
of the agents captured in situation s relative to the observation (.
For example, Explains(aqr, tar, @2, 0) states that the behaviour of
drones as modeled by situation/scenario o relative to the effect that
w2 = Vis(D1,L}) can be explained by action a4 executed at
time tq,- (see below for the values/binding of ag4, and tg4,). Thus,
(agr, tar) explains why the drone D; visited the location L). Note
that, just as in the case for achievement causation, we assume here
that = (root(s)) A @(s).

While explaining agent behaviour through the causes of the ef-
fect is reasonable, it may not always be insightful. For instance, we
can argue that the behaviour of the drone D; in o w.r.t. visiting L}
can be explained by its action flyTo(D1, L, L} ) executed at time 5.
However, this is obvious and is not very useful. A deeper level of ex-
planation requires analyzing the motivations of the involved agents,
in particular their intentions behind executing the actions that caused
the effect.

To further explain agent behaviour, we will use an intention
recognition component, which for this paper is considered to be
a black-box module. We use the predicate RRInt(d, ¢,a,t,s) to
denote that agent d is recognized to have the relevant intention
that ¢ in situation s w.r.t. the action a executed at time t. For in-
stance, RRInt(D1,< Vis(D1,LY), flyTo(D1, Ls, L}),5,0) says
that in scenario o, agent D is recognized to have the intention that
& Vis(Dq, L) for executing the action flyTo (D1, Ls, L) at time 5.
With this, we can further explain an agent’s behaviour via the root-
cause analysis of its intentions behind performing actions. In our ex-
ample, since D1 flew to L} due to its intention that < Vis(Dq, LY),
it is reasonable to explain its behaviour via the causes of having this
intention in the first place. This will reveal that D; had this intention
due to D.’s request, and thus its behaviour w.r.t. visiting L} can be
explained by this request action.

We now give the definition for Ezplains:



Definition 5.

def

Ezxplains(a,t, ¢, s) =
VP.[Va,t, s, p.(mp{root(s)) A p(s) A Causes(a,t, p,s)
D P(a,t,¢,s))
AVa,t,s,0.(3d’t,d s w.(P(d,t),p,s) A agent(a') = d
A RRInt(d',,a’,t',s)
Atime(s)=t' Ns' <
A =Int(d', v, root(s")) A Int(d', 4, s")
A Causes(a,t, Int(d',1),s")
D P(a,t,¢,s))
| D P(a,t,p,s).

Thus, Fzxplains is defined to be the least relation P such that if ac-
tion a executed at time ¢ causes ¢ in scenario s, then (a, ¢, ¢, s) is in
P, and if (a’,#, ¢, s) is in P (i.e. some other action a’ executed at
time ¢’ explains ¢ in s), the agent of a’ is d’, d’ is recognized to have
the intention that ¢ behind performing a’ at ¢’ in s, the timestamp of
s'ist’, s’ < s, and a executed at ¢ was the cause of this intention
in s, then (a,t, p, s) is in P. Here agent(a) denotes the agent of
the action a; it can be specified as usual by an axiom that returns the
agent of a, usually the first argument of a, i.e. agent(a(d, Z)) = d.
Also, s’ is the situation where a’ was executed. Finally, the two re-
quirements that the effect be false before the execution of the actions
in the scenario and becomes true afterwards, i.e. = (root(s)) A p(s)
and —Int(d’, 1, root(s")) A Int(d', 1, s"), are needed to ensure that
the achievement causes actually exist.

Put otherwise, agent behaviour relative to the observation that ¢
in scenario s can be explained by the action a executed at time ¢ iff
a attis acause of ¢ in s, or a at ¢ causes the intention behind some
explanation of ¢ in s.

Returning to our example, we can now formally state the two ex-
planations that we mentioned above and give the bindings for a4,
and t4,-. First, we can show that:

Proposition 6.

Dar = Explains(flyTo(D1, Ls, L1), 5, @2, 7).
But perhaps more interestingly, we can show that:
Proposition 7.

D}, = Explains(req(De, D1, O Vis(D1, L)), 2, 02,0),

def
where, D}, =

Dar U{RRInt(D1, < Vis(D1, L}), flyTo(D1, Ls, L), 5,0)}.

It is important to note that the scenario s in Definition 5 may and
will often include the actions of multiple agents, and thus explana-
tion of agent behaviour may trigger the analysis of the mental states
of multiple agents. For example, given another suitable scenario, rec-
ognizing the intention behind the controller agent D.’s request to D1
and analyzing this intention might have in turn exposed the causes
behind its actions, e.g. due to its prior commitments to safety, etc.
As such, the analysis performed here is truly multiagent in nature.
Also, although our example only involves single-action/direct causes
and we do not consider epistemic effects, as discussed above, the
framework does support secondary causes and causal knowledge dy-
namics; see [22] for concrete examples of these.

A potential issue with the above definition of explanation is that
in some domains, it might produce counter-intuitive results. Indeed,

it is not very hard to come up with examples where the causes
of the intention behind executing secondary and tertiary (i.e. non-
direct) causes might be irrelevant. For example, a precondition of
the flyTo(D1, Ls, L} ) action might have been that the drone D; has
enough fuel, and thus refueling D1 might have been an indirect cause
of eventually visiting L’ ; however the causes of the intention behind
refueling D1 have nothing to do with visiting L}. Thus, while ana-
lyzing the causes of the intention behind a primary or direct cause
seems useful, this is not always the case for indirect causes. To deal
with this, the following variant of Ezplains can be adopted.

def

Ezplains(a,t, @, s) =
(mp(root(s)) A p(s) A Causes(a,t,p,s)) V
EzxplainsDirectly(a,t, ¢, s),

where FxplainsDirectly is just like Fxplains but with Causes re-
placed with CausesDirectly.

6 Properties

We next discuss some general properties of our formalization. We
start by showing that requests work as expected:

Theorem 1 (Adoption).

D = —Know(agt, ~3p,p’. Starts(p, now) A
Suffiz(p', p, do(req(agt’, agt, d), now)) A ¢[p'], s) O
Int(agt, ¢, do(req(agt’, agt, ¢), 5)).

Proof Sketch. Since by the antecedent and the SSA for K,
there is a path that starts with a K-accessible situation in
do(req(agt’, agt, d), s) over which ¢ holds, by the SSA for G and
the axiom for G, the Gn-accessible paths at level O in situation
do(req(agt’, agt, ), s) will only include paths over which ¢ holds.
The rest of the proof follows from this, the definition of Int, and the
axiom for Gn. O

That is, an agent agt acquires the intention that ¢ when requested by
another agent agt’ that ¢ in situation s provided that ¢ is not known
to be impossible after the request action has happened in s. Note that
this holds even if ¢ is inconsistent with agt’s current intentions as the
requested goal is always adopted at the highest priority level (again,
this is by design). However, at all times the agent’s intentions remain
consistent. Thus if some other intention ¢ at some priority level in
s is inconsistent with the newly adopted goal ¢, ¢ is simply ignored
when computing the intentions in do(req(agt’, agt, ¢), s).

Next, we turn our attention to properties of explanations. Let D* =
D U DRrRint, Where Drrint is a fixed set of RRInt() sentences.
First, note that explanations include causes, i.e.:

Corollary 1.
D* = Causes(a,t, ¢, s) D Ezplains(a,t, p, s).

Moreover, we can show that explanations are not necessarily
causes. This can be proven using Proposition 7 and the following
lemma, which together produce a counterexample.

Lemma 1.
D} | ~Causes(req(De, D1, Vis(D1, L)), 2, p2,0).

We next show that explaining agent behaviour relative to logically
equivalent effects has the same result:



Proposition 8 (Extensionality w.r.t. Effects).

D* |= (Vs. p1(s) = p2(s)) D
(Ya,t,s. Explains(a,t,v1,s) = Explains(a,t, p2,s)).

Proof. This follows from the fact that we are using a possible
worlds/paths semantics. O

Finally, we study the conditions under which action occurrences
do not alter knowledge about explanations.

Theorem 2 (Persistence of Knowledge about Explanations).

D* = Vs,s',s", a,t, agt. executable(s) A —p{root(s)) A p(s)
A Kwhether(agt, Causes(a, t, ¢, now),s) As < s’
A (Vs™. s <s" <s' D Know(agt, p,s"))
D Kwhether(agt, Explains(a,t, p, now),s’).

Proof Sketch. We first show that the agent’s causal knowledge re-
mains unchanged when the antecedent holds. This can be shown by
proving that the causes of  remain the same in every epistemic al-
ternative as ( remains true in every new situation. Since Drrin+ in
‘D* does not change, the rest of the proof then follows from this and
the definition of Fxplains. O

That is, if an agent knows in s whether an action a executed at time
t is a cause of an effect ¢ (and thus whether a in t explains ¢ in
s), it will continue to know whether a executed at ¢ explains ¢ in a
future situation s, provided that its knowledge of the effect ¢ does
not change between s and s’.

However, this is not the case in general. For instance, if the agent
ceases to know that ¢, then in this new situation it will not know what
actions are causes, and consequently neither what actions explain ¢.

7 Related Work and Conclusion

In this paper, we proposed a formal account of causal reasoning about
motivations. Using this, we offered a novel take on explainable Al
that is grounded in theory of mind: agent behaviour in our framework
can be explained via the causal analysis of observed effects, which
in turn can trigger the analysis of their mental states.

Recently, the pursuit of transparent and explainable Al systems has
led to a renewed interest in the study of cognitive aspects of knowl-
edge representation (KR), as advocates of KR often argue that its
declarative nature makes it cognitively more suitable for explanation
purpose. There has been some work on formalizing explanation in
KR. For instance, in his early work, Shanahan [36] proposed a de-
ductive and an abductive approach to explanation in the situation cal-
culus, both of which are based on default reasoning. More recently,
Shvo et al. [39] proposed a belief revision-based account of expla-
nation. In their framework, a formula ¢ explains another formula )
if revising by ¢ makes the agent believe ¢/ and the agent’s beliefs
remain consistent afterwards. In [6], Dennis and Oren used dialogue
between the user and a Belief-Desire-Intention (BDI) agent system to
explain why the agent has chosen a particular action. Their approach
aims to identify any divergence of views that exist between the user
and the BDI agent relative to the latter’s behaviour and allows for an
interactive and user-friendly explanation process. In his SEM-based
formalization, Beckers [4] presented formal definitions of various
causal notions of explanation and proposed to use actual causation
for the purpose of explainable Al. The connections between these

notions and the consequences of ignoring the causal structure are ex-
plored. Miller [29] proposed a contrastive explanation model based
on structural causal models to enhance understanding and trust in Al
decision-making. In [27], SEM-based causal models are utilized to
generate explanations of the behaviour exhibited by model-free rein-
forcement learning agents. Finally, Sridharan et al. [41, 42] proposed
an explainable robotic architecture by integrating step-wise refine-
ment, non-monotonic reasoning, probabilistic planning, and interac-
tive learning. However, none of the aforementioned work formalize
causal analysis of agent motivation or employ such reasoning along
with theory of mind for explaining agent behaviour (while Shvo,
Klassen, and Mcllraith [39] appealed to theory of mind, they did not
address actual causation). In fact to the best of our knowledge, our
proposal is the first and the only attempt to this end.

Our current formalization is limited in many ways. For instance,
our proposal does not comply with many of the desiderata for expla-
nations proposed by [39], in particular those that are related to belief
and belief revision, since we only support knowledge and knowl-
edge update. Also, we only allow deterministic and fully observable
actions. Scenarios in our framework are linear, i.e. we assume that
the order of action occurrence is known. This also means that while
our proposal supports multiple agents, the underlying framework as-
sumed by our work must ensure that these agents only act one at a
time. When dealing with causation and explanations, we computed
achievement causes only. In the literature, other types of causes has
also been studied, e.g., actual maintenance causes; these are respon-
sible for mitigating the threats to the achieved effect [2]. Incorpo-
rating other types of causes thus would have allowed us to explain
effects further and in finer details. We leave these for future work.
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