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Abstract

Customizing software to perfectly fit individual needs is becoming increasingly
important in information systems engineering. Users want to be able to customize
software behavior through reference to terms familiar to their diverse needs and
experience. We present a requirements-driven approach to behavioral customiza-
tion of software systems. Goal models are constructed to represent alternative be-
haviors that users can exhibit to achieve their goals. Customization information is
then added to restrict the space of possibilities to those that fit specific users, con-
texts, or situations. Meanwhile, elements of the goal models are mapped to units
of source code. This way, customization preferences posed at the requirements
level are directly translated into system customizations. Our approach, which we
apply to an on-line shopping cart system and an automated teller machine sim-
ulator, does not assume adoption of a particular development methodology, plat-
form, or variability implementation technique and keeps the reasoning computa-
tion overhead from interfering with the execution of the configured application.
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1. Introduction

Adaptation is emerging as an important mechanism in engineering information
systems that are easier to maintain and manage. To cope with changes in the
environment or in user requirements, adaptive systems are able to change their
structure and behavior so that they fit to the new conditions [1, 2]. An important
manifestation of adaptivity is the ability of individual organizations and users to
customize their software to their unique and changing needs in different situations
and contexts.

Consider, for example, an on-line store where users can browse and purchase
items. Normally, an anonymous user can browse the products, view their price
information and user comments, add them to the cart, log-in, and check-out. But
different shop owners may want variations of this process for different users. They
may need, for example, to withhold prices, user comments, or other product infor-
mation unless the user has logged in, or only if the user’s IP belongs to a certain
set of countries. Or they may wish to rearrange the sequence of screens that guide
the buyer through the check-out process. Or, finally, they may wish to disable
purchasing and allow just browsing, with only some specific users, such as those
with proof of in-store or telephone purchase, allowed to add comments. The shop-
owner should be able to devise, specify, and change such rules every time she feels
it is necessary and then just observe the system reconfigure appropriately without
resorting to expert help. But how easy is this?

Satisfying a great number of behavioral possibilities and switching from one
to the other is a challenging problem in information systems engineering. While
there is significant research on modeling and implementing variability and adap-
tation, e.g. in the areas of Software Product-Lines and Adaptive Systems, two
aspects of the problem seem to still require more attention. Firstly, the need to
easily communicate and actuate the desired customization, using language and
terms that reflect the needs and experience of the stakeholders, such as the shop
owner of our example. Secondly, the need to allow the stakeholders to construct
their customization preferences themselves, instead of selecting from a restricted
set of predefined ones, allowing them, thus, to acquire a customization that is
better tailored to their individual needs.

To address these issues, in this paper we extend our earlier work on goal vari-
ability analysis [3, 4, 5, 6] and introduce a goal-driven technique for customizing
the behavioral aspect of a software system. A generic goal-decomposition model
is constructed to represent a great number of alternative ways by which human
agents can use the system to achieve their goals through performance of various
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tasks. The system-to-be is developed and instrumented in a way that the chunks of
code that can enable or prevent performance of such user tasks are clearly located
and controlled in the source code. After completion and deployment of the ap-
plication, to address their specific needs and circumstances, individual stakehold-
ers can refine the goal model by specifying additional constraints on the ways by
which human and machine actions are selected and ordered in time. A preference-
based AI planner is used to calculate such admissible behaviors and a tree structure
representing these behavioral possibilities is constructed. Thanks to having appro-
priately instrumented the source code, that tree structure can be used as a plug-in
which is inserted in the system and enforces the desired system behavior. This
way, high-level expressions of desired arrangements of user actions are automat-
ically translated into behavioral configurations of the software system. Amongst
the benefits of our approach are both that it brings the customization practice to
the requirements level and that it allows leverage of larger number of customiza-
tion possibilities in a flexible way, without imposing restrictions to the choice of
development process, software architecture, or platform technology.

The paper extends our earlier publication on the matter [7] in three major ways.
Firstly, we offer more details on the reasoning infrastructure that supports genera-
tion of customization plug-ins and show more rigorously why it works. Secondly,
we show how issues of scalability, repetition, and loops can be addressed through
dividing the customization problem into sub-problems and using multiple nested
tree structures. Thirdly, to our original on-line cart application study, we add an-
other study on an Automated Teller Machine (ATM) simulation and report on our
experiences.

We organize our presentation as follows. In Section 2 we present the core goal
modeling language and the temporal extension that we are using for representing
behavioral alternatives. In Section 3 we show how we connect the goal model
with the source code, how we express goal-level customization desires, and how
we translate them into behaviors of the system. In Section 4 we offer more formal
details of the process. We discuss the feasibility of our approach in Section 5.
Finally, in Section 6 we discuss related work and conclude in Section 7.

2. Goal Models

Goal models [8, 9] are known to be effective in concisely capturing alternative
ways by which high-level stakeholder goals can be met. This is possible through
the construction of AND/OR goal decomposition graphs. Such a graph can be

3



seen in Figure 1. The model shows alternative ways by which an on-line store can
be used for browsing and purchasing products.

Figure 1: A goal model

The graph consists of goals and tasks. Goals – the ovals in the figure – are
states of affairs or conditions that one or more actors of interest would like to
achieve [9]. Tasks – the hexagonal elements – describe particular low-level activ-
ity that the actors perform in order to fulfill their goals. To ease our presentation,
next to each task shape a circular annotation containing a literal of the form ti has
been added, which we will use in the rest of the paper to concisely refer to the
task. For example, t7 refers to the task View Basic Product Info.

Tasks can be classified into two different categories depending on what the
system involvement is during their performance. Thus, human-agent tasks are to
be performed by the user alone without the support or other involvement of the
system under consideration – an external system outside the scope of the analysis
may be used though. For example Consult Printed Catalog (t3) belongs to this
category because it is performed without the involvement of the system. On the
other hand, mixed-agent tasks are tasks that are performed in collaboration with
the system under consideration. Thus Add Comment is a mixed-agent task as
the user will add the comment and the system will offer the facility to do so.
Another example of a mixed-agent task is View Product Image: the system needs
to display an image and the user must view it in order for the task to be considered
performed. All tasks of Figure 1 are mixed-agent except for t3 and t8 which are
human-agent tasks.
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Goals and tasks are connected with each other using AND- and OR-decompo-
sition links, meaning, respectively, that all (resp. one) of the subgoals of the de-
composition need(s) to be satisfied for the parent goal to be considered satisfied.
In addition, children of AND-decompositions can be designated as optional. This
is visually represented through a small circular decoration on top of the optional
goal. In the presence of optional goals, the definition of an AND-decomposition
is refined to exclude optional sub-goals from the sub-goals that must necessarily
be met in order for the parent goal to be satisfied. For example, for the goal View
Items to be fulfilled, only the task View Basic Product Info is mandatory – tasks
View Prices, Change Ordering and View Product Image may or may not be chosen
to be performed by the user.

Furthermore, the order by which goals are fulfilled and tasks are performed
is relevant in our framework. To express constraints on satisfaction ordering we
use the precedence link (

pre−→). The precedence link is drawn from a goal or task
to another goal or task to specify that the satisfaction/performance of the target
of the link cannot begin unless the origin is satisfied or performed. For example
the precedence link from the task Use Cart (t2) to the goal Check Out implies that
none of the tasks under Check Out can be performed unless the task Use Cart has
already been performed.

Given the relevance of ordering in task fulfillment, solutions of the goal model
come in the form or plans. A plan for the root goal is a sequence of leaf level
tasks that satisfy both the AND/OR-decomposition tree and the associated prece-
dence links. In plan [t1, t7, t4, t2, t12, t14, t15, t16, t11] for example, the user logs-in,
browses the products with their prices, adds some of them to the cart, and then
checks out. In plan [t1, t7, t4, t9, t10, t2, t12, t14, t15, t16, t11], the user also views
and adds comments.

The goal model captures a potentially very large variety of such plans, which
are understood as a representation of the variability of behaviors that an actor may
exhibit in order to achieve their goals. Note that this behavioral variability that
is potentially exhibited by the user is to be contrasted with the variability of the
actual software system, in that the same system variant may be used in a variety of
ways by the user. For example, the user of our on-line store may variably choose
to perform or not perform the task Add Comment, even if the system feature for
performing that task (e.g. a textbox with a “submit” button next to it) is invariably
available to them.
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3. Enabling Goal-Driven Customization

Let us now see how our framework allows specification of preferred user be-
haviors and enables subsequent customization of the software system in a way
that these preferred behaviors are actually enforced. A schematic of our over-
all approach can be seen in Figure 2. At design time the system is developed
in a way that the code that enables each leaf level task is clearly identified in
the source code (frame B in the figure) and can be disabled or enabled using in-
formation appropriately acquired from replaceable customization plug-ins, whose
construction takes place after deployment, as described below. After deployment
of the application, the users can define behavioral customization constraints at
a high-level using structured English (frame C). These constraints are translated
into formulae in Linear Temporal Logic (D), which, together with the goal model
(A) are provided to a preference-based planner. The latter produces plans of the
goal model that best satisfy the given behavioral constraints (E). These plans are
finally merged into a structure called policy tree (F) which is then plugged into
the application so that the latter, thanks to the instrumentation that took place at
design time (B), exhibits the behavior that is desired in the original customization
constraints. In the rest of this section we describe each of these steps in more
detail.

3.1. Connecting Goal Models with Code
To allow interpretation of preferred plans into preferred software customiza-

tions, the system is developed in a way such that elements of the source code
are associated with tasks of the goal model. In our framework, the nature of
this association as well as the way it is established is transparent from a particu-
lar implementation technology or architectural approach (e.g. agent-, service- or
component-oriented) or a particular development process that, for example, goal-
oriented development methodologies propose (e.g. [10]). It is also independent of
variability implementation and composition techniques (e.g. [11, 12, 13]) in the
sense that any such technique could potentially be chosen and applied. Thus, to
establish the association between goal models and code we only identify two gen-
eral principles, which, if applied during development – in whatever architectural
or process context – our framework becomes applicable. These principles refer to
task actuation and task instrumentation, as explained below.

Task Actuation. For every mixed-agent task in the goal model there exists a
set of statements which are dedicated to exclusively supporting that task – and,
thus, serve no other purpose. Furthermore, it should be possible to prevent these
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Figure 2: From Customization Desires to Policy Trees

statements from executing, preventing in effect the user from performing the task.
There is no requirement that these statements are located in the same part of the
implementation and not scattered across components, modules, classes etc. – thus
the principle is not a suggestion of task-oriented modularization. We call this code
mapped code (fragment) to the task. Back in the on-line cart example, the mapped
code for the task Login is the code for drawing the username and password text
boxes as well as the “Submit” and “Clear” buttons on the user screen. This code
exists exclusively for allowing the user to perform this task. Not drawing those
widgets, through conditioning the mapped code, effectively prevents execution of
the task. As we will see, we found that the mapped code is predominantly code
that conveniently exists in the view layer of an application.

Task Instrumentation Points. For every mixed-agent task, there is a location in
the source code where the state of the system suggests that a task has been per-
formed. In the Login example this might be the point in which confirmation that
the login credentials are correct is sent back from the database and the application
is ready to redirect control elsewhere. In the task Review Order, this can be the
point where a summary of the order has been displayed on the screen – and we
assume that the user has successfully performed the subsequent reviewing task.
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The above principles are deliberately general and informal so that they can be
easily refined and applied in a variety of architectural, composition, and variability
implementation scenarios. In a component-based or service-oriented setting, for
example, the mapped code of each task can be associated with existing interfaces
or services – or adapters thereof – which may or may not be used by the process
engine or other orchestration/composition environment. In an aspect-oriented ap-
plication, on the other hand, modularization need not follow task separation. In-
stead tasks can be written as advice to be weaved (or not) in appropriate locations
in the source code. Later in the paper, drawing from our case studies with both
the on-line cart system and the ATM simulator, we show how fulfilling the above
principles turned out to be a very natural process.

3.2. Adding Customization Constraints
The temporally extended goal model with its precedence links is intended to

be an unconstrained and behaviorally rich model of the domain at hand. Indeed,
the goal model of Figure 1 describes a large variety of ways by which the user
could go about fulfilling the root goal, as long as each of these ways is physically
possible and reasonable. However the shop owner may wish to restrict certain
possibilities. For example, she may want to disallow the user to view the prices
unless he logs in first or prevent the user from viewing and/or adding comments,
before logging in or in general. She may even go on to disallow use of the cart,
again prior to logging in or even for the entire session. In the last case, this would
effectively imply turning the system into a tool for browsing products only.

To express additional constraints on how users can achieve their goals we aug-
ment the goal model with the appropriate customization formulae (CFs - frame D
in Figure 2). CFs are formulae in Linear Temporal Logic (LTL - [14]) grounded on
elements of the goal model. Different stakeholders in different contexts and situ-
ations may wish to augment the goal model with a different set of CFs, restricting
thereby the space of possible plans to fit particular requirements. To construct CFs
we use 0-argument predicates such as useCart or browseItems to denote satisfac-
tion of tasks and goals. These predicates become (and stay) true once the task
or goal they represent is respectively performed or satisfied. Furthermore, sym-
bols 2,3, ◦ and U are used to represent the standard temporal operators always,
eventually, next and until, respectively.

Using CFs we can represent interesting temporal constraints that performance
of tasks or satisfaction of goals must obey. Back to our on-line shop example,
assume that the shop owner would like to disallow certain users from browsing
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the products without them having logged in first. This could be written as a CF as
follows:

¬ viewBasicProductInfo U login
The above means that, in a use scenario, the task View Basic Product Info (t7)

should not be performed (signified by predicate viewBasicProductInfo becoming
true) before the task Login (t1) is performed for the first time (thus, predicate login
becoming true). For another class of users there may be a more relaxed constraint:

¬ viewPrices U login
Universal and existential constraints are also relevant. For example the shop

owner may want to disallow users from adding comments, thus we add the fol-
lowing CF:

2¬addComment
If, in addition to these, she wants to prevent them from viewing prices, logging

in and using the cart, this translates into a longer conjunction of universal proper-
ties seen in Figure 3. In effect, with the CF of the figure the shop owner allows
the users to only browse the products, their basic information, and their images.

(2¬ addComment ) ∧ (2¬ viewPrices)∧
(2¬ login) ∧ (2¬ useCart)

Figure 3: A Customization Formula

While CFs, as LTL formulae, can in theory be of arbitrary complexity (e.g. can
have nested temporal operators), we found in our experimentation that most CFs
that are useful in practical applications are of a specific and simple form. Thus
simple existence, absence, and precedence properties are enough to construct use-
ful customization constraints. Hence, LTL patterns such as the ones introduced by
Dwyer et al. [15], can be used to facilitate construction of CFs without reference
to temporal operators. In our application, we used patterns in the form of tem-
plates in structured language. Thus, CFs can be expressed in forms such as “h1
is [not] satisfied before/after h2 is satisfied” to express precedence as well as “h
is eventually [not] satisfied” to express existential properties, where h, h1, h2 are
goals or tasks of the goal model. Examples of customization desire expressions
can be seen in frame C of Figure 2. A simple interpreter performs the translation
of such customization desires into actual LTL formulae. In this way, construction
of simple yet useful CFs is possible by users who are not trained in LTL.
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3.3. Identifying Admissible Plans
Adding CFs significantly restricts the space of possible plans by which the

root goal can be satisfied. Given a CF, we call the plans of the goal model that
satisfy the CF admissible plans for the CF. Thus, all of [t7], [t7, t5],[t7, t10, t6],
[t8, t7, t6, t5], and [t3, t7, t10] are examples of admissible plans for the CF of Figure
3. However, plan [t1, t7, t4, t9, t2, t12, t14, t15, t16, t11], although it satisfies the goal
model and its precedence constraints, it is not admissible because it violates the
CF – all of its conjuncts actually.

To allow the identification of plans that satisfy a given CF, we are adapting and
using a preference-based AI planner, called PPLan [16]. The planner is given as
input a goal model, automatically translated to a planning problem specification,
as well as a CF, and returns the set of all admissible plans for the CF (frame E
in Figure 2). Unless interrupted, the planner will continue to immediately output
plans it finds until there are no more such. We present more details on how the
planner is adapted in Section 4.

3.4. Constructing and Using The Policy Tree
We saw that the introduction of a CF dramatically decreases the number of

plans that are implied by the goal model into a smaller set of admissible ones that
also satisfy the CF. The policy tree is simply a concise representation of those
admissible plans – with the difference that it includes only the mixed-agent tasks.
In particular, each node of the policy tree represents a task in the goal model.
Given a set of plans P – where the human-agent tasks have been removed – the
policy tree is constructed in a way that every sequence of nodes that constitutes a
path from the root to a leaf node is a plan in P and vice versa. It follows that every
intermediate node in the policy tree represents both a plan prefix – i.e. the first n
tasks of a plan – that can be found in P (by looking at the path from the root to the
particular node) and a set of continuation possibilities that yield complete plans of
P (by looking at possible paths from the node and towards the leafs).

The policy tree is also supplied with a pointer that points to one of the nodes of
the tree. We call this the state pointer. The role of the state pointer is to maintain
information about what tasks have been performed in a given use scenario at run
time. Thus, the state pointer pointing to a given node means that the tasks of
the plan prefix associated to that node (the associated prefix) have already been
performed. On the other hand, the tasks that can possibly be performed from that
point are restricted to the children of the node currently pointed at, or any of the
tasks in the associated prefix – in the sense that these tasks can be repeated.
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Figure 4: The effect of Customization Formulae
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In Figure 4, for example, on the left side of the bottom frame, part of a policy
tree can be seen together with the CF it originated from (2¬useCart). Through
the use of the planner, that CF results in a set of admissible plans, say P . Some
of those plans have a prefix [t1, t7, t6, t4, t10, . . . ]. Thus, in the resulting policy
tree that is depicted, there is a path from the root to the node t10 that constructs
this prefix. By looking at the children of node t10, we can infer that only two
expansions of the prefix at hand will yield a longer prefix that also exists in P and
therefore is admissible with respect to the CF: t9 and t11. In practice, this means
that if we are to keep satisfying the CF, we should either perform one of those
two actions or repeat actions of the existing prefix (but without moving the state
pointer).

An algorithm for constructing a policy tree from a list of admissible plans
that the planner returns is presented later in the paper. It is important to note
here that a new plan can always be appended to an existing policy tree in linear
time and enrich the behavioral possibilities. This allows us to use partial outputs
of the planner immediately while gradually enriching the tree as new plans are
generated.

3.5. Conditioning and Instrumenting the Source Code
Let us now see how the policy tree can be plugged into the software system

to enable behaviors that comply with the expressed customization desires. Prepa-
ration for this needs to actually happen at design time, when the application is
developed. Recall that the system is built following principles pertaining to task
actuation and task instrumentation. This means that, on one hand, each mixed-
agent task is associated with a set of statements (the mapped code) whose removal
can prevent execution of the task, and on the other hand, for each task there is a
well defined location in the code that marks completion of the task. The policy
tree is integrated by conditioning access to the mapped code based on the position
of the state pointer, and by adding statements in the instrumentation points that
advance the position of the state pointer accordingly.

More specifically, the former is implemented through the use of the function
canBePerformed(t). The function canBePerformed(t) returns true iff task t is one
of the children of the node currently pointed at by the state pointer or part of the
associated prefix. In other words, the code fragment can be entered only if the
new plan prefix that would result from performing the task that maps to that frag-
ment belongs to at least one of the admissible plans. For example the mapped
code of the task Use Cart involves buttons for adding items to the cart, text fields
for specifying quantities, links for viewing the cart content etc. All these can be
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Figure 5: Conditioning and Instrumenting Code

displayed only if canBePerformed(useCart) is true, that is the task Use Cart is in
one of the children of the state pointer, or it is part of the path from the root to the
state pointer. If this is not the case, the mapped code cannot be accessed, prevent-
ing rendering of the user interface elements, which in turn prevents performance
of the task by the user.

Advancement of the position of the state pointer, on the other hand, is im-
plemented through simple perform(t) statements inserted in the instrumentation
points, where t is the task that was just performed. The effect of the perform(t)
statement is that the state pointer advances to the child labeled with t or stays
where it is if t is part of the path from the root to the state pointer.

In Figure 5, examples of conditioning and instrumentation are shown for our
PHP-based on-line cart system. The upper right frame shows how displaying
the widgets for performing the task Add Comment is conditional to canBePer-
formed(addComment) being true. Once the user presses the submit button, a dif-
ferent file (commentControl.php) arranges to insert the comment to the database
and, among other workings, a call to perform(addComment) is made (seen in up-
per left frame), so that the policy tree advances to the corresponding node. In the
lower right frame, how customization conditions are mixed with run-time condi-

13



tions is illustrated. Thus, the “Checkout” button is visible if “Checkout” is allowed
by the current customization policy and the cart is non-empty, which is something
irrelevant of policy tree. It is important to notice, therefore, that the policy tree is
not used to completely arrange the details of the control flow of the application
but only to enforce more abstract customization decisions that have been made
at the requirements level. Note also that use of the policy tree is not restricted
to the functions discussed above. For example the function hasBeenPerformed(t),
which returns true iff task t is part of the associated prefix of the node currently
pointed, proved in our application to be helpful in handling large numbers of task
permutation possibilities.

Note, again, that the injection of conditioning and instrumentation code dis-
cussed above is taking place at design time and is based on the goal model. It is
therefore independent of the actual structure of the policy tree, which, once the
system is up and running, varies based on the customization constraints that are in
effect each time.

3.6. In Action
Let us now see a complete example of how a system is customized through ex-

pression of high-level customization desires. Back to our on-line shop, consider
the scenario in which the shop owner wants to construct CFs for newly identi-
fied groups within her customer base. In Figure 4, two different CF scenarios she
devised can be seen together with screen-shots showing the effect they have on
system behavior. In the scenario on the top frame the CF prevents the users from
– among other things – viewing any product information before they login. In
effect this means that once the session starts the only user action that is allowed
is logging in. Indeed, in the policy tree, login is the only child of the root. This
explains the bare-bones screen that is offered to the users (upper screen-shot la-
belled [I]). Later in the same scenario of the top frame the user has logged in and
is browsing products. However, the CF prevents the user from adding any com-
ments. Hence, this facility is absent when viewing detailed product information
(screen-shot [II]). Nevertheless, at this stage, making use of the cart or logging out
is possible as seen in the policy tree. Thus, the button “Add to cart” is visible next
to the product and the button “Logout” on the top left of the screen. The scenario
on the lower frame of Figure 4, on the other hand, tailored to e.g. customers from
a particular country overseas, prevents use of the cart but does not prevent addi-
tion of comments. Thus, at a stage where detailed product information is viewed,
the user cannot add the item to the cart as before, but she can post a comment or
log-out (screen-shot [III]). This is exactly what the state pointer indicates.
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4. Formalization and Translation Details

In this section, we look into the formal aspects of the previous steps in more
detail. In particular, we show how the goal model and the customization formulae
are together converted into a planning problem specification that allows reasoning
about admissible plans – through the use of a preference-based planner. We then
discuss in detail how the policy tree is constructed and show that the resulting
application that uses the tree complies with the specified customization formulae.

We define the semantics of our goal and CF language within the situation
calculus [17], a formal language for modeling dynamic domains. The situation
calculus allows us to easily exploit existing algorithms and tools for preference-
based planning for the purpose of evaluating admissible plans. Note that a similar
formalization has been proposed elsewhere [6]; the formalization there however
is based on a combination of hierarchical task networks (HTNs – [18]) and PDDL
2.0, a language for specifying planning problems with preferences [19]. Among
other differences – which include the limited expressiveness of PDDL temporal
preferences compared to LTL, the situation calculus does not offer constructs for
defining hierarchies like HTN specifications do, and this requires special treatment
as we see below. Through this treatment, the translation is applicable to a larger
class of planning systems, e.g. those that do not necessarily allow hierarchical
representations of domain information.

In the following we begin with a presentation of the situation calculus and con-
tinue with how the goal model and the CFs are translated into a dynamic domain
in that language. The translated specification will then be fed to a preference-
based planner to generate admissible plans. We then discuss how policy trees can
be constructed from the set of admissible plans.

4.1. The Situation Calculus
The situation calculus is a logical language for specifying and reasoning about

dynamical systems [17]. A situation s in the situation calculus is a history of
the primitive actions, α ∈ A, performed from a distinguished initial situation
S0. The special function do(α, s) maps an action and a situation into a new
situation, thus inducing a tree of situations rooted in S0. In the situation cal-
culus, the state of the world is expressed in terms of functions and relations,
called fluents, relativized to a particular situation; for instance, the relational flu-
ent confirmedCheckout(u, s) might mean that the user u has confirmed check-
ing out her cart in situation s. In the following, we will often refer to fluents in
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situation-suppressed form, e.g. confirmedCheckout(u) rather than confirmed-
Checkout(u, s). Another special predicate Poss(α,s) is used to denote that the ac-
tion α is executable in situation s. Finally, s v s′ means that either s = s′ or there
is a sequence of actions ~α = α1, α2, . . . , αn such that s′ = do(αn, . . . , do(α1, s))

1.
A basic action theory D in the situation calculus comprises of a variety of

axioms, the most important being for our purposes here: (1) action precondition
axioms, one per action α characterizing Poss(α, s), (2) successor state axioms,
one per fluent, that succinctly encode both effect and frame axioms and spec-
ify exactly when the fluent changes, and (3) axioms describing the initial state
of the system. Other axioms include unique names axioms for actions that state
that different action terms represent different actions, and domain-independent
foundational axioms that pertain to the definition of situations per se. The de-
tails of D are described in [17]. Given a goal formula G, a plan in the situation
calculus is a sequence of actions ~α = α1, α2 . . . , αn such that for the situation
s = do(~α, S0), G holds in s and the precondition axioms are satisfied throughout
~α, i.e. D |= G(s) ∧ Poss(α1, S0) ∧ Poss(α2, S1) ∧ . . . ∧ Poss(αn, Sn−1), where
S1 = do(α1, S0), S2 = do(α2, S1), etc. In the section that follows, we show how
to translate our goal model into a basic action theory, focussing on the three types
of axioms we mentioned above.

4.2. Translating the Core Goal Model
We define the semantics of our visual goal language using a set of translation

rules. Similar translation proposals are introduced in [20] and [21], but for dif-
ferent purposes; a distinguishing feature of our approach is the incorporation of
CFs. We first establish a mapping from the primitives of the goal based graphical
language to those of the situation calculus:

4.2.1. Primitives
• For every task t that appears in the goal model, introduce an action αt and a

relational fluent performed(t, s) in the situation calculus domain theory.

• For every goal g, introduce an AND/OR formula ϕg(s) constructed from
predicates of the type performed(t, s). The formula, which we call attain-
ment formula, is constructed as follows. Starting from g, each goal is recur-
sively replaced by the conjunction or disjunction of its children, depending
on whether g is AND or OR-decomposed – excluding optional subgoals. If

1We will use do(~α, s) as an abbreviation for do(αn, . . . , do(α1, s)).
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these subgoals are tasks, then the predicate performed(t, s) is used and the
recursion terminates.

We can now specify the precondition, successor state, and initial situation ax-
ioms based on the following rules.

4.2.2. Action Precondition Axioms
• For every task t in the goal model, construct a precondition axiom as fol-

lows. First we will construct a formula ϕcomp, which holds if t is unneces-
sary for satisfying the root goal in the goal model, as one or more alterna-
tive (competing) tasks to t has already been performed, making t redundant.
Given the goal model, consider the path from t to the root goal. Let GOR be
the set of all nodes gOR in the path which are OR-decomposed, including
the root and t’s parent. For each such gOR, consider its children that do not
belong to the path from t to the root goal. Let Gcomp be the set of all such
children of all gOR ∈ GOR. Finally let Tg be the set of all leaf level tasks
that are successors of a goal g. If g is a task then Tg contains only that task.
The formula ϕcomp is constructed as follows:

ϕcomp ≡
∨

∀g∈Gcomp

(
∨
∀t∈Tg

performed(t))

Observe that t does not occur in any of the alternatives together with any of
the tasks in Tg,∀g ∈ Gcomp. Excluding consideration of t together with any
of these tasks ensures that the plans for the goal model are minimal with
respect to the goal tree, or, in other words, no subset of the tasks included
in the plan satisfies the root goal. Thus, ϕcomp will be true if some of the
competing tasks has already been performed making t redundant.

Then consider the setGpre of all hard elements (hard-goals or tasks) hi such
that hi

pre−→ gj , where gj is t or any ancestor of t in the hard-goals subgraph.
The precondition axiom for t is finally the following:

Poss(αt, s) ≡ (
∧

∀hi∈Gpre

ψhi
(s)) ∧ (¬ϕcomp(s))

In the above, ψhi
is simply a fluent of the form performed(hi) if hi is a task,

or an attainment formula ϕhi
if hi is a higher-level hard-goal.
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Thus, the action αt associated with some task t is executable in situation s if
and only if the actions associated with all the tasks that precede t in the goal model
have been performed in s, and t is not redundant in s.

4.2.3. Successor State Axioms
Successor state axioms tell us how exactly fluents (i.e. descriptors of the cur-

rent state) change their values due to the performance of actions. We define one
such axiom per fluent. Hence:

• For each of the fluents performed(t, s) introduced above, construct a suc-
cessor state axiom as follows:

Poss(α, s) ⊃ (performed(t, do(α, s)) ≡ (α = αt ∨ performed(t, s)))

Thus, the fluent performed(t) holds in the situation resulting from action α
being performed in situation s, if and only if α refers to the action associated with
the task t, i.e. αt, or performed(t) was already true prior to the action – provided
that α is executable in s. Note that ⊃ denotes the implication connective.

4.2.4. Initial Situation and Plans
For the initial situation S0, every predicate of type performed(·, S0) is specified

to be false. If D is the action theory derived from the goal model and ϕg the
attainment formula representing the root goal g, then a plan for the goal model is
a plan for D that achieves ϕg, given the initial situation S0.

4.3. Customization Formulae
As we saw, Customization Formulae (CFs) describe temporal characteristics

of the behavior that emerges while goals are being fulfilled in a particular order
and under certain circumstances. Linear Temporal Logic (LTL) is used to form
CFs. Thus, adapting [16] to our purposes:

Definition (Customization Formula - CF) A customization formula (CF) is
an LTL formula formed with atoms from H ∪ T , where H is the set of hard-goals
and T the set of leaf level tasks of the goal model. It is drawn from the smallest
set K for which:
1. H ⊂ K, T ⊂ K.
2. If φ, φ1, φ2 are in K, then so do ¬φ, φ1 ∧ φ2, φ1 ∨ φ2, ◦φ, 2φ, 3φ, φ1Uφ2 and
final(φ).
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The symbols 2,3, ◦ and U , represent the temporal operators always, even-
tually, next and until, respectively. These operators are self-explanatory – we
evaluate them over finite paths (i.e. sequences of situations) specified by a pair of
situations [s1, s2], where s1 is a starting situation and s2 is the ending situation. In
addition to the above standard operators, the operator final(φ) is also used, and
holds if φ holds in s2 (see below for a formal semantics). Given a CF and a plan
for the root goal (therefore: a plan in the corresponding action theory), whether
the plan satisfies the CF can be evaluated by appealing to the situation calculus-
based semantics of LTL given by Gabaldon [22]. More specifically, let us use the
notation ϕ[s, s′] to denote that ϕ holds over the sequence of situations from s to
s′ = do(~α, s). The semantics of CFs in situation calculus terms are as follows –
again, appropriately adapted from [16]2.

g ∈ H then g[s, s′] ≡ ϕg(s)
t ∈ T then t[s, s′] ≡ performed(t, s)

f ∈ H ∪ T then final(f)[s, s′] ≡ f [s′, s′]
3φ[s, s′] ≡ (∃s1 : s v s1 v s′)ϕ[s1, s

′]
2φ[s, s′] ≡ (∀s1 : s v s1 v s′)ϕ[s1, s

′]
◦φ[s, s′] ≡ (∃α : do(α, s) v s′)ϕ[do(α, s), s′]

φ1Uφ2[s, s
′] ≡ (∃s1 : s v s1 v s′)ϕ2[s1, s

′] ∧ (∀s2 : s v s2 v s1)ϕ1[s2, s1]

On top of the Customization Formulae, which can in theory become complex,
simpler languages for expressing common temporal properties can be defined.
Customization Desires which we saw earlier can be expressions in such a lan-
guage. We particularly used the system presented in [6], which, inspired by work
on LTL patterns [15], considers a simple set of templates for representing four ma-
jor types of temporal constraints: existence, absence, precedence, and response –
we thus refer the reader to [6] for more details. In our applications both inside
and outside the context of this paper, we have found that such simple temporal
expressions suffice to express the vast majority of desires that may typically occur
in practice. Users desiring more expressive power can simply write LTL formulae
directly.

4.4. Generating Admissible Plans
The situation calculus semantics of the goal model indicate how it can be

translated into a planning problem specification. We use PPlan, a preference-

2Note that, the semantics for the boolean connectives and quantifiers are already defined in the
situation calculus, and thus they require no translation.
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based planner [16] as the target of our translation. PPlan reads an action theory
and a planning problem specification as well as preference formulae, which are
weighted linear combinations of LTL properties. PPlan searches for plans that
satisfy both the action theory and the set problem and also the LTL properties in a
way that their linear combination is optimized.

To achieve that, PPlan employs an A* best-first search to identify plans from
a specified initial situation to a situation that best satisfies a given preference for-
mula. Beginning from the initial situation and the empty plan, the algorithm pro-
gresses through possible next situations that form through the performance of ac-
tions, aiming at reaching a situation in which the goal formula is satisfied. The A*
evaluation function is a prediction of the best and the worst score the preference
formula can possibly acquire in later stages, given the current situation. These are
calculated by examining whether it is possible for the basic components of the
preference formula to be true or false in subsequent situations, given their LTL
semantics and the current situation and partial plan.

Given the absence of hierarchical information in the resulting specification,
to this original heuristic we added our own extension aiming at exploiting the
structure of the goal tree. In particular, in a given situation, where a subset of the
leaf-level tasks of the goal model have already been performed, it is possible to
calculate an estimation of the maximum and the minimum number of tasks that
need to be performed for the root goal to be satisfied. The distance of a candi-
date plan from satisfying the root goal is used together with the heuristics that
are already employed in PPLan. As a result PPlan searches taking into account
the structure of the goal tree and as such exhibits in certain cases much better
performance in finding solutions for the goal tree. More details can be found in
[23].

Note that use of PPlan in this context does not involve optimization. Thus,
CFs are simply added as components of equal weight in the linear combination
and only plans with optimal weight (i.e. satisfying each and every component) are
considered as admissible.

4.5. Policy Trees and Software Behaviors
The set of admissible plans generated by PPlan are converted into a more

convenient form which we call policy tree. Policy trees are defined as follows:
Policy Tree Construction. Let P be the set of admissible plans. A policy tree

is a tree structure rooted in r for which: a) each node except r represents a task t
in P and b) a plan prefix [t1, t2, . . . , ti] is in P if and only if there exists a node in
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the policy tree for which the unique path from r (excluding the r) to that node is
a representation of that prefix.

Figure 6 shows an algorithm for generating the tree. That the algorithm satis-
fies the definition follows from its constructive nature – we omit a detailed proof.
The state pointer and the relationship of the tree to code are defined as follows.

State Pointer and Code Instrumentation. The policy tree is supplied with
a unique pointer that points to one of the nodes (initially the root). Every node
t in the policy tree is associated with one or more chunks of code ct – following
the corresponding association with the tasks of the goal model. We called these
chunks ct the mapped code fragment of t. For a task t to be considered performed,
at least one of the ct must be accessed. Such a chunk of code ct can be accessed
in the application if and only if the state pointer points at t’s parent, t itself, or any
descendant of t in the policy tree. Moving of the policy tree is only allowed from
parent to child signifying performance of the task represented by the child.

INPUT: a set of admissible plans P with human-agent tasks removed
OUTPUT: a policy tree rooted at root
root := new node
label(root) := [empty]
for each new plan /*for each new plan p = [t1, t2, ...] ∈ P */

currentNode := root
loop j /*for each task tj in p*/

if ∃ child c of currentNode such that label(c) == tj then
currentNode := c

else
c := new node
label(c) := tj
set c to be the child of currentNode
currentNode := c

end if
end loop /*for each task in plan p*/

end for each /*for each new plan p */

Figure 6: Building the Policy Tree

Having defined the policy tree as such we can claim the following:
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Theorem. The sequence by which tasks are performed for the first time in the
application satisfies the original CFs.

Proof Sketch. As we saw, the output of the preference-based planner guar-
antees that each and every optimal plan that returns (call, again, this set P ) is
going to be compliant to the set of preference formulae (CFs being a special case
thereof) as per discussion in [16]. Further, as we saw, a task t cannot be performed
unless at least one of the associated chunks of code ct is accessed and executed.
Consequently, all we need to show is that there is no sequence of first execution
events of chunks of code ct1 , ct2 , . . . that does not result in a complete or a prefix
of a complete plan of [t1, t2, . . .] in P .

We will show this by contradiction. Let us, then, assume that there is a se-
quence of executions of chunks of code which does not match any plan in P .
Thus, assume that only a (potentially empty) prefix up to task ti, i ≥ 0 matches
a prefix [. . . , ti] of a plan in P and access to cti+1

causes performance of ti+1 and
maps to a plan prefix [. . . , ti, ti+1] that is not found in P . But, by definition of
the policy tree, access to cti+1

may have happened only if: a) ti+1 is a child of the
node pointed by the state pointer or b) ti+1 is a task that belongs to the path from
the root to the node pointed by the state pointer.

In case (a), by construction of policy trees and definition of the state pointer,
cti+1

can be accessed if and only if the prefix that results from appending ti+1 to
the prefix associated with the state pointer is a prefix of a plan in P . If not, which
is our assumption, the policy tree will not allow access to cti+1

.
In case (b), if ti+1 belongs to the path from the root to the state pointer, and

given that the state pointer moves only towards the leafs, ti+1 has been performed
before. As such, the prefix [. . . , ti, ti+1] cannot be defined given that ti+1 occurs
twice in it.

It is therefore necessarily the case that plan prefix [. . . , ti, ti+1] resulting from
accessing cti+1

when state pointer is at [. . . , ti] is a prefix of a plan in P . 2

5. Applying Goal-Based Customization

Let us now discuss some of the experiences we acquired from our case studies
with our on-line cart system and the ATM simulation.

5.1. Code Development and Instrumentation
Three Layer On-Line Cart System. The on-line cart system we built is a

5,000 lines-of-code (5KLOC) application in PHP, following a common 3-layer
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architectural style – i.e. separating view, application logic, and storage layers.
Two developers, senior undergraduate students at that time, were asked to develop
the system following a standard textbook object-oriented approach with the only
goal-model-related restriction that the leaf level tasks of the goal model (which
was maintained exclusively by the first author) would be treated as acceptance
tests for the end-product and that optional and alternative tasks maintain that status
in the implementation.

ATM Simulator. The Automatic Teller Machine (ATM) simulator is a Java-
based application derived from an exemplar object-oriented analysis and design
process, introduced for educational purposes [24]. It is written in Java and con-
tains 47 classes within 8 packages and a total of about 4 KLOC. A goal model was
developed to describe different ways by which user actions can be performed to
meet user goals pertaining to the ATM use, such as withdraw cash, transfer funds,
inquire etc. Examples of such actions are typing a password, giving the card back,
printing a receipt, and performing various ATM functions. CFs then constrain
which of those actions can be performed and in what order. The ATM simulation
can be seen as a model of an interface through which important functions of a real
information system are accessed. As such, it is an example of how customizing
the details of user interaction is a way to actually enforce customization decisions
in entire business processes.

Looking at the results afterwards, we found that, in both systems, identifi-
cation of mapped code was possible and emerged naturally in the development
process. Interestingly, in the three-layer cart system, the mapped code would tend
to appear at the view layer of the application. Furthermore, subsequent condition-
ing and instrumentation of the mapped code did not pose difficulties either. In
the PHP on-line cart system, policy trees are plugged as separate globally visible
PHP classes in the application. In the Java-based ATM application, a policy tree
class is declared and instantiated within the context of an ATM object, a reference
to which is passed to various other classes which perform various ATM actions
(e.g. deposit, withdrawal etc). In both studies, the use of the methods canBePer-
formed(t) and performed(t) to query/manipulate the tree did not pose any obvious
perception problems or design issues requiring intense problem solving effort.

5.2. Anchoring the Policy Control Process
An issue that triggered further investigation is that of scoping behaviors. In

our example, a plan prefix reflects the use of the system by one user at a particular
time. In the on-line cart example, the same or a different behavior may unfold
from the beginning in a different client system (some other customer trying to buy
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something), or by the same customer later that day. With the term anchor we refer
to any type of entity, or group thereof, whose lifetime is bound to a plan prefix.
In our on-line cart example, the anchor is the web session. If, for example, the
session expires so does the plan prefix that has been constructed to that point. A
new session always means an empty plan prefix (i.e. state pointer points to the
root of the policy tree) waiting to be expanded through user actions. In the ATM
application, the anchor is the transaction – once one such is over, the state pointer
returns to the root node.

In different applications different anchoring entities can be thought. In an ap-
plication processing business process, e.g. for academic admissions, a student
application can be considered as the anchoring entity. Thus, for each new ap-
plication that arrives a new empty prefix is constructed which is then augmented
(through progression of the state pointer) based on tasks that are performed to pro-
cess that particular application. Interestingly, different anchoring entities can be
treated by different policy trees. For example different users of our on-line store
(identified through e.g. a cookie mechanism) may experience different behavioral
customizations, through assigning a separate policy tree to each of them.

5.3. Nested Policy Trees
A direct consequence of choosing anchors for the policy trees is that an ap-

plication can be designed to contain many and different policy trees instantiated,
manipulated and consulted simultaneously at run-time. A useful way by which
multiple policy trees can be used together is through nesting. Nested policy trees
are a result of viewing certain subtrees of the main goal decomposition as separate
and governed by their own “local” CFs. Thus we can ignore the details under those
subtrees from the main analysis and treat each of them as a separate goal model.
As a consequence, in the resulting policy tree of the main decomposition, some
nodes do not represent tasks but hard goals of the goal model to which such sep-
arate subtrees are rooted. As such, those nodes can be associated with a separate
policy tree dictating the behavioural details for fulfillment of the corresponding
goal. Satisfaction of that hard-goal can be assumed only after performance of a
sequence of sub-tasks from the root to a leaf of the separate subtree.

More specifically, assume that node tN of the main policy tree is associated
with a hard-goal and as such with a nested policy tree. Once canBePerformed(tN )
is true, the nested policy tree is constructed with its state pointer pointing to its
root. The application can perform the tasks in the nested tree in a sequence permit-
ted by that nested tree – its state pointer will move accordingly. Once a leaf task
of the nested tree is performed the nested tree is destroyed and the state pointer
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of the main tree now points at tN – implying that its performance has been com-
pleted. Repetition of tN is now (or later) possible, by constructing a new nested
policy tree and following the same process.

Figure 7: Nested Policy Trees

In Figure 7, an example of nested policy trees as we applied it in the ATM
system is shown. Within one session with an ATM, a user may wish to perform
several transactions. Each transaction must obey its own customization desires
that are independent of the customization desires pertaining to the session. Thus,
while the order by which tasks such as authenticating or getting the receipt form
one domain of concern (from a customization point of view), the transaction de-
tails per se constitute a separate domain of concern. As such, the CFs that are
constructed for the Perform Transaction subtree are completely separate (mention
different tasks, that is) from the CFs that are written for the Use ATM goal. The
latter treat Perform Transaction as a mere task. In the policy tree that results from
applying CFs to the Use ATM goal, nodes that refer to Perform Transaction are
nested policy trees, whose structure results from the application of separate CFs
over the subtree rooted to that goal.

During execution, the state pointer of the main tree progresses as session tasks
are performed, such as inserting the card, entering password, etc. Once Perform
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Transaction is possible, the corresponding nested policy tree is constructed. The
pointer of the nested policy tree progresses as the tasks pertaining to the particular
transaction (e.g a cash withdrawal) are performed. Once the transaction is com-
plete (a leaf task of the nested tree is performed) the main state pointer now points
to the Perform Transaction node, signifying its completion. Another transaction
can always be performed before or after the tasks that follow, since by defini-
tion the policy tree allows revisiting the same path. However for the particular
node, Perform Transaction, repetition means that a different nested tree will be
constructed and, therefore, a different path can potentially be followed there (e.g.
deposit instead of withdrawal).

In our application of nested policy trees in the ATM case, we found that the
technique allows for a) more tractable and efficient reasoning about CFs and plans,
b) effectively dealing will loops and repetitions. Thus, instead of performing one
reasoning task with one large tree, we perform many different reasoning exercises
with several different but smaller trees. At the same time, while in the one mono-
lithic policy tree repetition through different branches is not allowed (to maintain
satisfaction of the CFs), nested policy trees lift this constraint through assuming
that the temporal scope of the “local” CFs does not include repetitions, allowing
variation in repetition through resetting the nested tree. The obvious cost is that
we cannot impose global customization desires for the entire goal model.

5.4. Dealing with Permutations and Multiple Choices
The advantage of using policy trees for enforcing customization decisions was

best exhibited in problems where multiple permutations of steps are possible to
complete a process within the same or different customization scenarios. Con-
sidering the check-out process of our on-line shop, for example, credit card and
address info can be acquired in any order (t15 and t13 or t14 respectively), using
two different screens. Although the two tasks can of course be developed inde-
pendently, problems arise when each step needs to redirect to the next step, or
provide to the user the history of steps so far or the steps that can be performed
from there. One challenge is that the developer of a particular step is not aware of
the global customization decisions so that she e.g. labels the interface accordingly.
In addition, when the developer knows that at a particular point in the code many
possibilities exist as to which tasks can be performed and in what order, there is a
challenge as to how to organize the sequence of canBePerformed() checks.

While the solution to these challenges largely depends on developer intuition
and based on the information of the problem at hand, our practices in both appli-
cations seem to suggest a strategy that is based on recursive exhaustion of possible
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next steps. In particular, for every point in the code where a customization deci-
sion is to be made, the developer can (programmatically) identify all tasks that
could potentially be performed based on the information in the goal tree. For ex-
ample after inserting the card to the ATM, the goal model suggests that the tasks:
take card back, enter password and display receipt warning message may only
follow. At run-time, any subset of these may appear as a child of a policy tree
depending on the specified CFs. Through recursive invocations of the canBePer-
formed() function the developer will need to identify that admissible subset. From
that she can arbitrarily pick the task to perform next and repeat the process of cal-
culating the feasible set over again. When a need to identify which task has been
performed emerges, the predicate hasBeenPerformed() can be used. Thus, for ar-
ranging the checkout sequence of screens in our on-line cart application, arrays
of canBePerformed() and hasBeenPerformed() checks were used to, for example,
appropriately label the “Next” buttons of the check-out “wizard” of the on-line
store and ensure that they redirect to the correct next step according the preferred
plan.

In general the CF-based customization approach allows for separation of the
customizability aspect of the application, allowing developers of individual com-
ponents to work without having to consult e.g. an exhaustive list of possible global
customizations. As we saw, however, depending on the nature of the application,
some consideration of possibilities often needs to take place, and the goal model,
which policy trees must necessarily satisfy, offers a useful representation for that.

5.5. Using Customization Formulae
How easy is it to use CFs in practice? To examine this we tried a variety of

customization formulae that we thought to be relevant in realistic cases of ATM
and on-line cart systems and observed their effect in constraining system behavior.
In the on-line cart system, our main experimentation revolved around multiple
policies as to when login should be performed with respect to other tasks, as well
as what the allowed sequence of the checkout screens should be. These were
customized though customization formulae of precedence (translated through the
U operator in LTL). In combination to these constraints we also added existential
ones dictating: whether comments can be added or viewed, whether the image
should be displayed, whether the cart could be used or even whether login was
possible. All these constraints were chosen based on what we thought could be
realistic needs of a shop owner.

In the ATM example, we focussed on our experience in using such systems and
observing several different arrangements of steps as well as scenarios pertaining
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to the context in which an ATM is used. Thus ATMs that exist in e.g. convenience
stores often don’t have a mechanism for “swallowing” the card for the entire ses-
sion, meaning that the card needs to be taken back before even the password is
entered (which can be expressed as a precedence CF). Further, ATMs that are ex-
pected to be busier and less accessible to maintenance should prevent withdrawal
over a certain amount, complicated transactions other than withdrawal, or print-
ing of a receipt (if paper supply is difficult). At the same time ensuring that the
user does not forget her card can be a matter of deciding whether to give it back
before or after giving the receipt – again arranged through precedence CFs. We
can imagine, for example, that third-party ATMs often found in e.g. airports or
stores, would like to imitate the interface of the ATMs offered by the bank that
the current user is using – information that we assume can be easily recognized in
their bank card.

In both our applications, the formulae would translate without problems into
systems that behaved accordingly. We believe that the perceived complexity of
LTL does not obstruct the process in any way, both because very simple LTL
formulae suffice for achieving interesting customization results and because the
use of templates is possible for hiding the LTL details.

We, however, found that our framework suggests a customization practice we
have not been accustomed to. The users, instead of choosing from a set of prede-
fined customization options, which reflects today’s practice (cf. [25]), are instead
asked to construct and “run” their own customization desires. While this adds
significant flexibility and allows for defining customizations that are otherwise
currently impossible or difficult (e.g. arranging complicated permutations), it also
implies that extra steps need to be taken for the users to understand and validate
the customization constraints they pose, before these are enacted in the system.
Work on preference-based exploration of requirements alternatives [6] may offer
a way by which this understanding can be facilitated. We however believe that
more experimentation with real users is required to fully understand the practice
of preference-driven customization.

5.6. Performance and Tool Considerations
The construction of a policy tree is an off-line activity and can afford longer

computation times on separate computing infrastructure. This practice is to be
contrasted with an approach in which an AI planner or other reasoning machinery
is used at run-time, demanding unpredictably expensive computational steps to
intervene in the normal control flow. It is important to note that a working cus-
tomization can be achieved even if a subset of all admissible plans is provided,
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though the resulting policy may prevent behaviors that are otherwise desired. The
policy tree can keep being updated as the planner returns new plans.

To acquire a sense of the time required for generating a useful set of plans
with the current planner implementation, we tried different examples of CFs over
the goal models of both the on-line cart and the ATM simulation example, while
varying the maximum amount of plans. The result for the on-line cart of Figure 1
(21 elements including 16 leaf-level tasks) can be seen in Table 8. Rows represent
different CF scenarios. Thus CFs browse and browse2 constraint use of the cart
and the check-out system – the latter constraining, among other things, comments
as well. Scenarios loginFirst, checkPrices and useCartX require user login before
browsing, using the cart and checking out, respectively – the last come in different
variations on aspects such as the ordering of check-out screens. For simplicity
we omit the full LTL specification of those customization formulae. The cells
show how long it took for an Intel Xeon QuadCore at 2GHz, 6KB Cache and
approx. 780MB RAM reserved for the computation to calculate the first 20, 40 etc.
admissible plans for each of those customization scenarios – times are in seconds.
For example, it took 23 seconds for the planner to return the first 40 plans for CF
browse2; more plans were found later. Note that the conversion of the preferred
plans into a policy tree is computationally insignificant in comparison and thus
not the actual concern in this discussion.

Scenario Top 20 40 60 80 100
browse 2 4 10 40 65
browse2 3 23 43 60 130
loginFirst 28 148 420 1302 1777
checkPrices 21 67 165 381 684
useCart 25 108 206 509 859
useCart2 19 56 114 191 286

Figure 8: Time to Generate the first N Plans for the on-line Cart (in sec)

For the ATM simulation, a model with 57 elements out of which 43 are leaf-
level tasks, we tried CFs that correspond to different contexts in which the ATM
can be situated. For example, remoteMall is a CF concerning an ATM situated
in a mall in some remote location, which makes its supply with receipt paper and
banknotes an expensive process; as such it does not allow printing a receipt and
withdrawal of large amounts of cash. The mallCommon CF scenario on the other
hand assumes that the mall is more accessible but busier, thus functions other than
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withdrawal are allowed. The other scenarios, such as branch, allow for a wider
range of functions. The performance results for the ATM (using one policy tree)
on the same hardware configuration can be seen in Table 9 – times are again in
seconds.

Scenario Top 20 40 60 80 100
mallCommon 1 2 3 5 6
mallRemote 7 20 54 54 54
streetStandard 68 247 482 482 482
branch 17 56 114 208 1035

Figure 9: Time to Generate the first N Plans for the ATM (in sec)

We definitely anticipate much better performance as the field of preference-
based planning is fast progressing. For example, an HTN-based planner with
preferences has been introduced offering dramatically better performance through
utilization of domain knowledge expressed as task hierarchies [26] – that planner
has already been used for analysing stakeholder preferences [6]. The principles
applied in this paper are applicable to that planner as well. Further, to our knowl-
edge, an efficient preference-based planner that readily returns a policy rather than
a set of plans (lifting thereby the need to construct the policy tree as a separate
step) is yet to be introduced in the AI planning community.

5.7. Reflection: Advantages and Challenges
Overall, our exploration with the on-line cart system and the ATM simulation

demonstrated three basic advantages of our proposal. Firstly, it makes software
customization a requirements problem, whereby users can customize the system
by talking about their goals and activities rather than features of the software. Sec-
ondly, customization is constructive, meaning that users express their own desires
as to how the system should behave, and not selective, where users would be re-
stricted in a predefined set of choices, which limits the customization possibilities.
Thirdly, the system design is impacted to a minimal degree in a way that applica-
tion of our approach can be possible independent of methodological, architectural
and platform choices.

The aspect that we found challenging in our application was that of quality
assurance. In our proposal the space of possible customizations dramatically in-
creases, in a way that testing becomes a more challenging activity. We believe that
this is a necessary consequence of any effort to produce high-variability adaptable
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designs. Our naive testing practice was based on selecting a set of characteristic
customization formulae and devising test plans for each. We believe, however,
that since the goal model itself is a descriptor of all customization possibilities, it
can potentially be used for producing more educated test plans.

Finally, the two applications per se allow for generalizability arguments that
cannot exceed certain limits. Firstly, both implementations are relatively small (a
few thousands lines of code) and therefore the influence of scale to the proposed
practice is yet to be empirically explored. It must be noted, however, that mea-
sures of size that seem more applicable to our case may as well be aspects such
as the number and complexity of user interactions. In that regard, we consider
both our prototypical systems to be good models of real working systems of their
respective types. Secondly, the systems we developed are an example of a web-
based system for supporting e-commerce business transactions and a front-end
conversing-style of interface for performing a particular task, respectively. Ap-
plications in different classes of systems would perhaps offer more evidence on
the breadth of applicability of the proposal. The same is, finally, true with the
platform and architectural style that was chosen, and, particularly, with the user
interface technology and architecture that was applied. Our follow-up empiri-
cal investigation involves different classes of systems that employ alternative and
more complicated interactions with the users.

6. Related Work

Our proposal for requirements-driven software customization relates to re-
search on a variety of topics including adaptive systems, product lines and soft-
ware/service composition.

General goal-driven adaptation has been proposed by several authors. Thus,
Zhang and Cheng [27] use temporal logic to specify adaptive program semantics.
Further, work by Brown et al. [28] uses goal models to explicitly specify what
should occur during adaptation. Their approach uses goal models to specify the
adaptation process; in our approach the adaptation is the indirect result of impos-
ing customization and precedence constraints on goals. Simmons, on the other
hand, uses strategy trees to evaluate alternative reconfigurations of software sys-
tems in the context of QoS and structural changes [29]. Our approach differs in
that it deals with user goals and behaviour adaptation.

Researchers have also proposed different ways to model and bind variability in
business processes. Lapouchnian et al. use goal models for analyzing alternative
business process configurations [30]. Lu et al. propose the construction of flexible
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business process templates that lay the basic constraints that must be met [31].
Elsewhere [32, 33] variability constructs are added to existing business process
notations. In requirements engineering, a constraint language with temporal fea-
tures has been proposed to analyze families of scenarios [34]. Elsewhere, Liaskos
et al. [6] propose the use of a preference-based planner for the purpose of elic-
iting and understanding stakeholder attitudes. Here we move this idea one step
further to show how the result of planner-based analysis can be used to actually
customize a system. In general, existing frameworks do not include an implemen-
tation approach, and when they do, this is restricted to specialized frameworks
such as workflow engines [33] or e.g. BPEL-based service composition platforms
[30].

The extensive literature on software composition, on the other hand (for a tax-
onomy see e.g. McKinley et al. [12]), is focusing on specific technologies, frame-
works or techniques by which composition can be implemented – e.g. composi-
tion of services [35], the AHEAD framework and its descendants [36, 37] or As-
pect Orientation [38], Domain Specific Languages and Generators [39, 40]. Use
of existing AI planning applications to service composition, in particular, ([41, 42]
– cf. Rao and Su for a survey [13]), requires certain assumptions such as, for ex-
ample, availability of cleanly defined services, limited degree of user intervention
or the existence of some implementation and execution technique of the desired
composition that also alleviates increased reasoning times. Our customization
framework attempts to be more generally applicable, has a stronger focus on the
implementation aspect without making platform or architectural assumptions and
it also focuses on user interactions and therefore families of behaviours (system
customizations) rather than single-purpose compositions. At the same time, it
focuses on the requirements aspect of the problem, that is how the desired cus-
tomization result can be communicated through reference to terms related to the
experience and the goals of the actual users, rather than technical features of the
system.

7. Conclusions

Tailoring the behavior of a software system to the needs of individual stake-
holders, contexts and situations as these change over time has emerged as an im-
portant need in today’s systems development. However, it also poses a challenging
engineering and maintenance problem.

The main contribution of our paper is a technique to allow the translation of
high-level customization requirements into an appropriately configured system,
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in a flexible and accessible way. The merits of our approach lie in the following
features. Firstly, it offers a direct linkage of software customization with user re-
quirements using goal models and high-level customization desire specifications.
This way customization is performed through talking about the user activity and
experience rather than features of the system to be. Secondly, our proposal for
constructive customization, where users express their exact needs instead of se-
lecting from predefined options, allows for flexibly leveraging a much larger space
of customization possibilities, leading to systems that are better tailored to the ex-
act needs of users. Thirdly, the proposed approach implies minimum impact to
the implementation process, being transparent to the architectural, modulariza-
tion, process and platform choices the engineers have made, as long as two simple
mapping principles are followed and the ability to maintain and query the policy
tree is arranged. Our applications in the on-line cart system and the ATM simula-
tor offered us strong evidence that both the customization practice per se and the
engineering and development intervention that enables it are feasible and exhibit
the above advantages.

Our proposal opens a variety of possibilities for future research. One of them
is an extended empirical investigation on the applicability and generality of our ba-
sic implementation principles. Such empirical work also includes evaluating with
end-users the extent and manner by which they can construct customization de-
sires of various levels of complexity. Furthermore, application of the technique in
a variety of system types would allow better understanding of whether the current
form of the policy tree offers the right level of information or whether adding more
expressiveness should be attempted. This could include, for example, adaptation
of the semantics of satisfaction predicates so that task repetition also becomes
subject to CF compliance or addition of run-time instance-level information to the
produced policy structure. Such extensions would potentially allow for finer grain
customization, but at the significant expense of simplicity, of impact minimality
to the design and of maintaining a modest computational cost.
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