
Logical Foundations for a Rational BDI Agent
Programming Language (Extended Version)?

Shakil M. Khan and Yves Lespérance

Department of Computer Science and Engineering
York University, Toronto, ON, Canada
{skhan, lesperan}@cse.yorku.ca

Abstract. To provide efficiency, current BDI agent programming languages with
declarative goals only support a limited form of rationality – they ignore other
concurrent intentions of the agent when selecting plans, and as a consequence,
the selected plans may be inconsistent with these intentions. In this paper, we
develop logical foundations for a rational BDI agent programming framework
with prioritized declarative goals that addresses this deficiency. We ensure that the
agent’s chosen declarative goals and adopted plans are consistent with each other
and with the agent’s knowledge. We show how agents specified in our language
satisfy some key rationality requirements.

1 Introduction

This paper contributes to the foundations of Belief-Desire-Intention agent programming
languages/frameworks (BDI APLs), such as PRS [10], AgentSpeak [19], etc. Recently,
there has been much work on incorporating declarative goals in these APLs [7, 28, 21,
5, 27, 22]. In addition to defining a set of plans that can be executed to try to achieve
a goal, these programming languages also incorporate goals as declarative descriptions
of the states of the world which are sought. A typical BDI APL with declarative goals
(APLwDG) uses a user-specified hierarchical plan library Π containing abstract plans,
a procedural goal-base Γ containing a set of plans that the agent is committed to exe-
cute, and a declarative goal-base∆ that has goals that the agent is committed to achieve.
In response to events in the environment and to goals in ∆, in each cycle the agent in-
terleaves selecting plans from Π , adopting them to Γ , and executing actions in Γ . The
execution of some of these actions can in turn trigger the adoption of other declara-
tive goals. This process is repeated until all the goals in ∆ are successfully achieved.
The role of these declarative goals in an APLwDG is essentially for monitoring goal
achievement and performing recovery when a plan has failed by decoupling plan fail-
ure/success from that of goal. Since these declarative goals capture the reason for exe-
cuting plans, they are necessary to perform rational deliberation, and react in a rational
way to changes in goals that result from communication, e.g. requests.

While current APLwDGs have evolved over the past few years — e.g. some of them
handle restricted forms of temporally extended goals [8] — to keep them tractable

? This paper is an extended version of [16] and is also a revised version of [14].

and practical, they sacrifice some principles of rationality. In particular, while select-
ing plans to achieve a declarative goal, they ignore other concurrent intentions of the
agent. As a consequence, the selected plan may be inconsistent with the agent’s other
intentions. Thus the execution of such an intended plan can render other contemporary
intentions impossible to bring about. Also, these APLwDGs typically rely on syntactic
formalizations of declarative goals, subgoals, and their dynamics, whose properties are
often not well understood.

Apart from this, there has been work that focuses on maintaining consistency of a
set of concurrent intentions. For example, Clement et al. [3, 4] argue that agents should
be able to reason about abstract HTN plans and their interactions before they are fully
refined. They propose a method for deriving summary information (i.e. external pre-
conditions and effects) of abstract plans and discuss how this information can be used
to coordinate the interactions of plans at different levels of abstractions. Thangarajah et
al. [26] use such summary information to detect and resolve conflicts between goals at
run time. Horty and Pollack [9] propose a decision theoretic approach to compute the
utility of adopting new (non-hierarchical) plans, given a set of already adopted plans.
While some of these approaches can be integrated in APLs (e.g. [26]), they leave out
many aspects of rationality (e.g. they do not say what the agent should do if external
interference makes two of her intentions permanently incompatible), and do not deal
with declarative goals.

In this paper, we develop a logical framework for a rational BDI APL with pri-
oritized declarative goals called Simple Rational APL (SR-APL, henceforth), that ad-
dresses these deficiencies of previous APLwDGs. Our framework combines ideas from
the situation calculus-based Golog family of APLs (e.g. [6]), our expressive semantic
formalization of prioritized goals, subgoals, and their dynamics [13, 15], and work on
BDI APLs. We ensure that the agent’s chosen declarative goals and adopted plans are
consistent with each other and with the agent’s knowledge. In doing this, we must ad-
dress two fundamental questions about rational agency: (1) What does it mean for a
BDI agent to be committed to concurrently execute a set of plans next while keeping the
option of further commitments to other plans open, in a way that does not allow pro-
crastination? (2) How to ensure consistency between an agent’s adopted declarative
goals and adopted plans, given that some of the latter might be abstract, i.e. might be
only partially instantiated in the sense that they include subgoals for which the agent
has not yet adopted a (concrete) plan? We show how agents specified in our framework
satisfy some key rationality requirements. Our framework tries to bridge the gap be-
tween agent theories and practical APLs by providing a model and specification of an
idealized BDI agent whose behavior is closer to what a rational agent does. As such, it
allows one to understand how compromises made during the development of a practical
APLwDG affect the agent’s rationality.

The paper is organized as follows: in the next section, we discuss a motivating
example. In Sections 3 and 4, we outline our formal BDI framework. In Section 5, we
specify the semantics of SR-APL. In Section 6, we show that in the absence of external
interference, our agent behaves in ways that satisfy some key rationality principles.
Then in Section 7, we summarize our results and discuss possible future work.

2 A Motivating Example

Consider a blocks world domain, where each block is one of four possible colors: blue,
yellow, green, and red. There is only a stacking action stack(b, b′): b can be stacked
on b′ in state s if b 6= b′, both b and b′ are clear in s, and b is on the table in s. There
are no unstacking actions, so the agent cannot use a block to build two different towers
at different times. Assume that there are four blocks, BB , BY , BG, and BR, one of
each color. the agent knows the color of these blocks, and knows that initially all the
blocks are on the table and are clear. Now assume that the agent has the following
two goals: (1) to eventually have a 2 blocks tower that has a green block on top and
a non-yellow block underneath, and (2) to have a 2 blocks tower with a blue block on
top and a non-red block underneath; thus ∆ = {♦TwrGȲ ,♦TwrBR̄}, where TwrC1

C̄2

.
=

∃b, b′. OnTbl(b′) ∧ On(b, b′) ∧ ¬C2(b
′) ∧ C1(b). Suppose our agent’s plan library Π

has two rules:

♦TwrGȲ : [OnTbl(b) ∧ OnTbl(b′) ∧ b 6= b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬Y(b) ∧ G(b′)]← stack(b′, b),

♦TwrBR̄ : [OnTbl(b) ∧ OnTbl(b′) ∧ b 6= b′ ∧ Clear(b)
∧ Clear(b′) ∧ ¬R(b) ∧ B(b′)]← stack(b′, b).

That is, if the agent has the goal to have a green and non-yellow tower and knows about
a green block b′ and a distinct non-yellow block b that are both clear and are on the
table, then she should adopt the plan of stacking b′ on b, and similarly for the goal of
having a blue and non-red tower.

Now, consider a typical APLwDG, that (without considering the overall consistency
of the agent’s intentions) simply select plans from Π for the agent’s goals in ∆ and
eventually executes them in an attempt to achieve her goals. We claim that such an APL
is not always sound and rational. For instance, according to this plan library, one way of
building a green non-yellow (and a blue non-red) tower is to construct a green-blue (a
blue-green, respectively) tower. While these two plans are individually consistent, they
are inconsistent with each other, since the agent has only one block of each color. Thus
a rational agent should not adopt these two plans. However, it can be shown that the
following would be a legal trace for our blocks world domain in such an APL:

〈{}, ∆〉 ⇒ 〈{σ1}, ∆〉 ⇒ 〈{σ1, σ2}, ∆〉 ⇒ 〈{σ2}, {♦TwrGȲ }〉.

The agent first moves to configuration 〈{σ1}, ∆〉 by adopting the plan σ1 = stack(BB ,
BG) in response to ♦TwrBR̄ , then to 〈{σ1, σ2}, ∆〉 by adopting σ2 = stack(BG, BB)

to handle ♦TwrGȲ , and then to 〈{σ2}, {♦TwrGȲ }〉 by executing the intended action σ1.
At this point, the agent is stuck and cannot complete successfully. Thus, in such an
APL, not only is the agent allowed to adopt two inconsistent plans, but the execution
of one of these plans makes other concurrent goals impossible (e.g. the execution of
stack(BB , BG) makes ♦TwrGȲ impossible to achieve).

The problem arises in part because actions are not reversible in this domain; there
is no action for moving a block back to the table or for unstacking it. This is common
in real world domains, for instance, most tasks with deadlines or resources, e.g. doing

some errands before noon, a robot delivering mail without running out of battery power,
etc. While such irrational behavior could in principle be avoided by using appropriate
conditions in the antecedent of the plan-selection rules (e.g. by stating that the agent
should only adopt a given plan if she does not have certain other goals), this puts an
excessive burden on the agent programmer. Ideally, such reasoning about goals should
be delegated to the agent.

3 Preliminaries

Our base framework for modeling goal change is the situation calculus as formalized
in [17, 20]. In this framework, a possible state of the domain is represented by a situa-
tion. There is a set of initial situations corresponding to the ways the agent believes the
domain might be initially, i.e. situations in which no actions have yet occurred. Init(s)
means that s is an initial situation. The actual initial state is represented by a special
constant S0. There is a distinguished binary function symbol do where do(a, s) denotes
the successor situation to s resulting from performing the action a. Thus the situations
can be viewed as a set of trees, where the root of each tree is an initial situation and
the arcs represent actions. Relations (and functions) whose truth values vary from situ-
ation to situation, are called relational (functional, respectively) fluents, and are denoted
by predicate (function, respectively) symbols taking a situation term as their last argu-
ment. There is a special predicate Poss(a, s) used to state that action a is executable in
situation s. Finally, the function symbol Agent(a) denotes the agent of action a.

We use a theoryD that includes the following set of axioms:1 (1) action precondition
axioms, one per action a characterizing Poss(a, s), (2) successor state axioms (SSA),
one per fluent, that succinctly encode both effect and frame axioms and specify exactly
when the fluent changes [20], (3) initial state axioms describing what is true initially
including the mental states of the agents, (4) axioms identifying the agent of actions,
one per action a characterizing Agent(a), (5) unique name axioms for actions, and (6)
domain-independent foundational axioms describing the structure of situations [17].

Following [23], we model knowledge using a possible worlds account adapted to
the situation calculus. K(s′, s) is used to denote that in situation s, the agent thinks
that she could be in situation s′. Using K, the knowledge of an agent is defined as:
Know(Φ, s)

.
= ∀s′. K(s′, s) ⊃ Φ(s′), i.e. the agent knows Φ in s if Φ holds in all of her

K-accessible situations in s. K is constrained to be reflexive, transitive, and Euclidean
in the initial situation to capture the fact that agents’ knowledge is true, and that agents
have positive and negative introspection. The dynamics of knowledge is specified by
providing a SSA forK that supports knowledge expansion as a result of sensing actions
[23] and some informing communicative actions [12]. As shown in [23], the constraints
on K continue to hold after any sequence of actions since they are preserved by the
SSA for K. We also assume that the agent is aware of all actions.

To support modeling temporally extended goals, we introduced a new sort of paths
along with an axiomatization for paths in [13]. A path is essentially an infinite sequence

1 We will be quantifying over formulae, and thus assume D includes axioms for encoding of
formulae as first order terms, as in [25]. We will also be using lists of programs, and assume
that D includes an axiomatization of lists.

of situations, where each situation along the path can be reached by performing some
executable action in the preceding situation. We use (possibly sub/super-scripted) vari-
ables p to denote paths. There is a predicate OnPath(p, s), meaning that the situation s
is on path p. Also, Starts(p, s) means that s is the starting situation of path p. A path p
starts with s iff s is the earliest situation on p.

We use Φ(s), Ψ(s), · · · , etc. to denote state formulae in the context of knowledge
(and φ(p), ψ(p), · · · , etc. for path formulae in that of goals), each of which has a free
situation variable s (path variable p, respectively). s (and p) will be bound by the context
where the formula Φ(s) (and φ(p), respectively) appears. Where the intended meaning
is clear, we sometimes suppress the situation variable (path variable) fromΦ, Ψ, · · · , etc.
(φ, ψ, · · · , etc. respectively). Also, we often use now to refer to a placeholder constant
that stands for the current situation.

We will use some useful constructs that are defined in [13]. A state formula Φ even-
tually holds over the path p if Φ holds in some situation that is on p, i.e.: ♦Φ(p) .

=
∃s′. OnPath(p, s′) ∧ Φ(s′). Secondly, Suffix(p′, p, s) means that path p′ is a suffix of
another path p w.r.t. a situation s; Suffix(p′, p, s) holds iff s is on p, and p′ is the sub-
path of p that starts with s. Finally, SameHist(s1, s2) means that the situations s1 and s2

share the same history of actions, but perhaps starting from different initial situations.

4 Formalization of Prioritized Goals

In [13], we proposed a logical framework for modeling prioritized goals and their dy-
namics. Our formalization here is based on [13], but modified as specified in the last
paragraph of this section. In our framework in [13], an agent can have multiple goals
or desires at different priority levels, possibly inconsistent with each other. We specify
how these goals evolve when actions/events occur and the agent’s knowledge changes.
We define the agent’s chosen goals or intentions, i.e. the goals that the agent is actively
pursuing, in terms of this goal hierarchy. In that framework, agents constantly optimize
their chosen goals. To this end, we keep all prioritized goals in the goal-base unless
they are explicitly dropped. At every step, we compute an optimal set of chosen goals
given the hierarchy of prioritized goals, preferring higher priority goals, such that cho-
sen goals are consistent with each other and with the agent’s knowledge. Thus at any
given time, some goals in the hierarchy are active, i.e. chosen, while others are inactive.
Some of these inactive goals may later become active (e.g. if a higher priority active
goal that is currently blocking an inactive goal becomes impossible or is dropped) and
trigger the inactivation of other currently active (lower priority) goals.

Goal Semantics As in [13], we specify the agent’s prioritized goals or p-goals us-
ing accessibility relation/fluent G. A path p is G-accessible at priority level n in situ-
ation s if all the goals of the agent at level n are satisfied over this path and if it starts
with a situation that has the same action history as s. The latter requirement ensures
that the agent’s G-accessible paths are compatible with the actions that have been per-
formed so far. We say that an agent has the p-goal that φ at level n in situation s (i.e.
PGoal(φ, n, s)) iff φ holds over all paths that are G-accessible at n in s. A smaller n
represents higher priority, and the highest priority level is 0. Thus as in [13], we assume

that the set of p-goals are totally ordered according to priority. Note that, in this frame-
work one can evaluate goals over infinite paths and thus can handle arbitrary temporally
extended goals; hence, unlike some other situation calculus based accounts where goal
formulae are evaluated w.r.t. finite paths (e.g. [24]), in this framework one can handle,
for example, unbounded maintenance goals.

As in [13], we allow the agent to have infinitely many p-goals. However in many
cases, the modeler will want to specify a finite set of initial p-goals. When a finite num-
ber of p-goals is assumed, we can use the functional fluentNPGoals(s) to represent the
number of prioritized goals that the agent has in situation s. The modeler/programmer
will usually provide some specification of the agent’s initial p-goals at the various pri-
ority levels, using some initial goal axioms. For instance, the initial prioritized goals for
our blocks world example with domain theory DBW can be specified as follows:

(a) Init(s) ⊃ ((G(p, 0, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrGȲ)

∧ (G(p, 1, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′) ∧ ♦TwrBR̄)),
(b) ∀n, p, s. Init(s) ∧ n ≥ 2 ⊃ (G(p, n, s) ≡ ∃s′. Starts(p, s′) ∧ Init(s′)).

(a) specifies the p-goals of the agent in the initial situations (we assume that the goal
♦TwrGȲ has higher priority than ♦TwrBR̄); (b) makes G(p, n, s) true for every path p that
starts with an initial situation for n ≥ 2. Thus at these levels, the agent has the trivial
p-goal that she be in an initial situation.

An agent’s chosen goals must be realistic. To filter out the paths that are known to
be impossible from G, we define realistic p-goal accessible paths: p is GR-accessible
at level n in s if it is G-accessible at n in s and if it starts with a situation that is K-
accessible in s. In our framework, an agent has the realistic p-goal that φ at level n in
situation s (i.e. RPGoal(φ, n, s)) iff φ holds over all GR-accessible paths at n in s.

We define chosen goals or c-goals using realistic p-goals. Note that an agent’s real-
istic p-goals at various priority levels can be viewed as candidates for her c-goals. Given
the set of realistic p-goals, in each situation the agent’s c-goals are specified to be those
that are in the maximal consistent set of higher priority realistic p-goals. We define this
iteratively starting with a set that contains the highest priority realistic p-goal accessible
paths, i.e. GR-accessible paths at level 0. At each iteration we obtain the intersection of
this set with the set of next highest priorityGR-accessible paths. If the intersection is not
empty, a new chosen set of p-goal accessible paths (and p-goals defined by these paths)
at level i is obtained. We call a p-goal chosen by this process an active p-goal. If on the
other hand the intersection is empty, then it must be the case that the p-goal represented
by this level is either in conflict with another active higher priority p-goal/a combination
of two or more active higher priority p-goals, or is known to be impossible. In that case,
that p-goal is ignored (i.e. marked as inactive), and the chosen set of p-goal accessible
paths at level i is the same as at level i − 1. To get the prioritized intersection of the
set of GR-accessible paths up to level n, the process is repeated until i = n is reached.
G∩(p, n, s) is used to denote that in situation s, path p is in the prioritized intersection
of GR-accessible paths up to level n. We say that a path p is G∩-accessible in situation
s, i.e.G∩(p, s), ifG∩(p, n, s) holds for all levels n. Finally, we say that an agent has the
c-goal that φ in situation s (i.e. CGoal(φ, s)) if φ holds over all G∩-accessible paths in

s. We can show that initially our blocks world agent has the p-goals/c-goals that ♦TwrGȲ
and ♦TwrBR̄ , i.e.: DBW |= ∀s. Init(s) ⊃ CGoal(♦TwrGȲ ∧ ♦TwrBR̄ , s).

To get positive and negative introspection of goals, we impose two inter-attitudinal
constraints on the K and G-accessibility relations in the initial situations. We have
shown that these constraints then continue to hold after any sequence of actions since
they are preserved by the SSAs for K and G. See [11] for details.

Goal Dynamics An agent’s goals change when her knowledge changes as a result
of the occurrence of an action (including exogenous events), or when she adopts or
drops a goal. There are two special actions, for adopting a p-goal φ at some level n
and dropping a p-goal φ, adopt(φ, n) and drop(φ), and a third action for adopting a
subgoal ψ relative to a supergoal φ, adoptRT (ψ, φ).

The dynamics of p-goals are specified using a SSA for G as follows (the agent’s
c-goals are automatically updated when her p-goals change). Firstly, to handle the oc-
currence of a non-adopt/drop action a, all p-goals are progressed to reflect the fact that
this action has occurred. Secondly, to handle adoption of a p-goal φ at level m, a new
formula containing the p-goal is added to the agent’s goal hierarchy atm. To be precise,
in addition to progressing all p-goals at all levels, a new level containing the p-goal that
φ is inserted at m and all current levels with priority greater or equal to m are pushed
one level down the hierarchy. Finally, to handle the dropping of a p-goal φ, the levels
that imply the dropped goal in the agent’s goal hierarchy are replaced by the trivial for-
mula that the history of actions in the current situation has occurred, and thus the agent
no longer has the p-goal that φ. See [13] for details.

Handling Subgoals We also handle subgoal adoption and model the dependencies
between goals and the subgoals and plans adopted to achieve them. The latter is impor-
tant since subgoals and plans adopted to bring about a goal should be dropped when the
parent goal becomes impossible, or is dropped. We handle this as follows: adopting a
subgoal ψ relative to a parent goal φ adds a new p-goal that contains both this subgoal
and this parent goal, i.e. ψ ∧ φ. This ensures that when the parent goal is dropped,
the subgoal is also dropped, since when we drop the parent goal φ, all the p-goals at
all G-accessibility levels that imply φ including ψ ∧ φ are also dropped. Note that the
parent goal φ could be a p-goal at multiple levels. We assume that the subgoal ψ is
always adopted w.r.t. the highest priority supergoal level, i.e. the highest priority level
where φ holds. Also, the subgoal ψ is always adopted at the level immediately below
the supergoal φ’s level. The reason for doing this is that since ψ is a means to the end
φ, they should have similar priorities. ψ is said to be a subgoal of φ in situation s (i.e.
SubGoal(ψ, φ, s)) iff there is a G-accessibility level n in s such that φ is a p-goal at n
while ψ is not, and for all G-accessibility levels in s where ψ is a p-goal, φ is also a
p-goal. See [15, 11] for details of our formalization of subgoals.

Prioritized Goals for Committed Agents The formalization of prioritized goal dy-
namics in [13] ensures that the agent always tries to optimize her chosen goals. She
will abandon a c-goal φ if an opportunity to commit to a higher priority but inconsistent
with φ goal arises. As such, our account in [13] displays an idealized form of rational-

ity. This is in contrast to Bratman’s [1] practical rationality that takes into consideration
the resource-boundedness of real world agents. According to Bratman, intentions limit
the agent’s reasoning as they serve as a filter for adopting new intentions. However, the
agent is allowed to override this filter in some cases, e.g. when adopting φ increases
her utility considerably. The framework in [13] can be viewed as a theory of intention
where the filter override mechanism is always triggered.

Note that, in that framework, the agent’s c-goals are very dynamic. For instance, as
mentioned earlier, a currently inactive p-goal φ may become active at some later time,
e.g. if a higher priority active c-goal that is currently blocking φ (as it is inconsistent
with φ) becomes impossible. This also means that another currently active c-goal ψ
may as a result become inactive, not because ψ has become impossible, was achieved,
or was dropped, but due to the fact that ψ has lower priority than and is inconsistent
with the newly activated goal φ (see [13] for a concrete example).

Such very dynamic c-goals/intentions are problematic as a foundation for an APL,
as the agent spends a lot of effort in “recomputing” her intentions and plans to achieve
them, and her behavior becomes hard to predict for the programmer. To avoid this, here
we use a modified version of our formalization in [13] that eliminates the filter over-
ride mechanism altogether so that agents’ p-goals/desires are dropped as soon as they
become inactive. We can do this with the following simple changes: (1) we require
that initially the agent knows that her p-goals are all possible and consistent with each
other, (2) we don’t allow the agent to adopt p-goals that are inconsistent with her cur-
rent c-goals/intentions, and (3) we modify the SSA for G so that the agent’s p-goals
are dropped when they become impossible or inconsistent with other higher priority c-
goals. In the resulting “committed agent” framework, an agent’s p-goals are much more
dynamic than in the original framework. On the other hand, her c-goals are now much
more persistent, and are simply the consequential closure of her desires, as these must
now all be consistent with each other and with the agent’s knowledge. The resulting
model of goals is somewhat simplistic, but is sufficient in an APL context.

5 Agent Programming with Prioritized Goals

Our proposed framework SR-APL combines elements from BDI APLs such as AgentS-
peak [19] and from the ConGolog APL [6], which is defined on top of the situation
calculus. In addition, to facilitate monitoring of goal achievement and performing plan
failure recovery, we incorporate declarative goals in SR-APL. To specify the operational
semantics of plans in SR-APL, we will use a subset of the ConGolog APL. This subset
includes programming constructs such as primitive actions a, wait/test actions Φ?, se-
quence of actions δ1; δ2, nondeterministic choice of arguments πv. δ, nondeterministic
iteration δ∗, and concurrent execution of programs δ1‖δ2, to mention a few. Also, as
in ConGolog, we will use Trans(σ, s, σ′, s′) to say that program σ in situation s can
make a single step to reach situation s′ with the program σ′ remaining, and Final(σ, s)
to mean that the program σ may legally terminate in situation s. Finally, Do(σ, s, s′)
means that there is a terminating execution of program σ that starts in s and ends in s′.

Components of SR-APL First of all, we have a set of axioms/theory D specifying

actions that can be done, the initial knowledge and (both declarative and procedural)
goals of the agent, and their dynamics, as discussed in Section 3 and 4. Moreover, we
also have a plan libraryΠ with rules of the form φ : Ψ ← σ, where φ is a goal formula,
Ψ is a knowledge formula, and σ is a plan; a rule φ : Ψ ← σ means that if the agent
has the c-goal that φ and knows that Ψ , then she should consider adopting the plan that
σ. The plan language for σ is a simplified version of ConGolog and includes the empty
program nil, primitive actions, waiting for a condition, sequences, and the special action
for subgoal adoption, adoptRT (♦Φ, σ); here ♦Φ is a subgoal to be adopted and σ is
the plan relative to which it is adopted.2 While our account of goal change is expressive
enough to handle arbitrary temporally extended goals, here we focus on achievement
goals and procedural goals exclusively. We believe that extending our framework to
support maintenance goals should be straightforward, since maintenance goals behave
like additional constraints on the agent behavior in contrast to achievement goals for
which the agent needs to plan for.

Semantics of SR-APL An SR-APL agent can work on multiple goals at the same
time. Thus at any time, an agent might be committed to several plans that she will exe-
cute in an interleaved fashion. We use our situation calculus domain theory D to model
both adopted declarative goals and plans. Initially D only contains declarative goals.
As specified by the SSA for G, D is updated by adding plans or other declarative goals
to the agent’s goal hierarchy when a transition rule (see below) makes the agent perform
an adopt or adoptRT action. We ensure that an agent’s declarative goals and adopted
plans are consistent with each other and with the agent’s knowledge. In our semantics,
we specify this by ensuring that there is at least one possible course of actions (i.e. a
path) known to the agent, and if she were to follow this path, she would end up realizing
all of her declarative goals and executing all of her procedural goals.

One way of specifying an agent’s commitment to execute a plan σ next in D is to
say that she has the intention that Starts(s) ∧ ∃s′. OnPath(s′) ∧ Do(σ, s, s′), i.e. that
each of her intention-accessible paths p is such that it starts with some situation s, it
has the situation s′ on it, and s′ can be reached from s by executing σ. However, this
does not allow for the interleaved execution of several plans, since Do requires that σ
be executed before any other actions/plans.

A better alternative is to represent the procedural goal as Starts(s)∧∃s′. OnPath(s′)∧
DoAL(σ, s, s′), which says that the agent has the intention to execute at least the pro-
gram σ next, and possibly more. DoAL(σ, s, s′) holds if there is an execution of pro-
gram σ, possibly interleaved with other actions by the agent herself, that starts in situa-
tion s and ends in s′, which we define as:3

DoAL(σ, s, s′) .= Do(σ‖(πa. Agent(a) = agt?; a)∗, s, s′).

2 We use the ConGolog APL here because it has a situation calculus-based semantics that is
well specified and compatible with our agent theory. We could have used any APL with these
characteristics.

3 Note that, while our theory supports exogenous actions performed by other agents, we assume
that all actions in the plans of agt that specify her behavior must be performed by agt herself.

However, a new problem with this approach is that it allows the agent to procrastinate
in the execution of the intended plans in D. For instance, suppose that the agent has
the p-goal at priority level n1 to execute the program σ1 and at level n2 to execute σ2

next. Then, according to our definition of DoAL, the agent has the intention at level n1

to execute σ1 and at level n2 to execute σ2, possibly concurrently with other actions
next, since we use DoAL to specify those goals. The “other actions” at level n1 (n2,
respectively) are meant to be actions from the plan σ2 (σ1, respectively). However,
nothing requires that the additional actions that the agent might execute are indeed from
σ2(σ1, respectively), and thus this allows her to perform actions that are unnecessary as
long as they do not perturb the execution of σ1 and σ2.

To deal with this, we include an additional component, a procedural intention-base
Γ , to an SR-APL agent. Γ is a list of plans that the agent is currently actively pursuing.
To avoid procrastination, we will require that any action that the agent actually performs
comes from Γ (as specified in the transition rule Astep below). In the following, we will
use Γ ‖ to denote the concurrent composition of the programs in Γ :4

Γ ‖
.
= if (Γ = [nil]) then nil else First(Γ)‖(Rest(Γ))‖.

In SR-APL, a program configuration 〈σ, s〉 is a tuple consisting of a program σ and
a ground situation s. An agent configuration on the other hand is a tuple 〈Γ, s〉 that
consists of a list of plans Γ and a ground situation s. The initial agent configuration
is 〈[nil], S0〉. Although strictly speaking an agent configuration includes the knowledge
and the goals of the agent, these can be obtained from the (fixed) theory D and the
situation in the configuration.

The semantics of SR-APL are defined by a two-tier transition system. Program-
level transition rules specify how a program written in our plan language may evolve.
On top of this, we use agent-level transition rules to specify how an SR-APL agent
may evolve. Our program-level transition rules are simply a subset of the ConGolog
transition rules. We use 〈σ, s〉 → 〈σ′, s′〉 as an abbreviation for Trans(σ, s, σ′, s′).

Agent-Level Transition Rules These transition rules are given in Table 1 and are
similar to those of a typical BDI APL.5 First of all, we have a rule Asel for selecting
and adopting a plan using the plan library Π for some realistic p-goal ♦Φ. It states that
if: (a) there is a rule in the plan library Π which says that the agent should adopt an
instance of the plan σ if she has ♦Φ as her p-goal and knows that some instance of Ψ ,
(b) ♦Φ is a realistic p-goal with priority n in s for which the agent hasn’t yet adopted
any subgoal, (c) the agent knows in s that Ψ ′, (d) θ unifies Ψ and Ψ ′, and (e) the agent
does not intend not to adopt DoAL(σθ) w.r.t. ♦Φ next, then she can adopt the plan σθ,
adding DoAL(σθ) as a subgoal of ♦Φ to her goals in the theory D, and adding σθ to Γ
(here Handled(φ, s) is defined as ∃ψ. SubGoal(ψ, φ, s)).

We can show that if an agent does not have the c-goal in s not to adopt a subgoal ψ
w.r.t. a supergoal φ, then she does not have the c-goal that ¬ψ next in s, i.e.:

4 We will use various standard list operations, e.g. First (representing the first item of a list), Rest
(representing the sublist that contains all but the first item of a list), Cons (for constructing a
new list from an item and a list), Member (for checking membership of an item within a list),

Table 1. Agent Transition Rules

Member(♦Φ : Ψ ← σ,Π), D |= RPGoal(♦Φ, n, s),
D |= ¬Handled(♦Φ, s) ∧ Know(Ψ ′, s), mgu(Ψ, Ψ ′) = θ,

(Asel) D |= ¬CGoal(¬∃s′. Do(adoptRT (DoAL(σθ),♦Φ), now, s′), s)
〈Γ, s〉 ⇒ 〈Cons(σθ, Γ), do(adoptRT (DoAL(σθ),♦Φ), s)〉

Member(σ, Γ), D |= RPGoal(DoAL(σ), n, s),
(Astep) D |= 〈σ, s〉 → 〈σ′, do(a, s)〉 ∧ ¬CGoal(¬∃s′. Do(a, now, s′), s)

〈Γ, s〉 ⇒ 〈Replace(σ, σ′, Γ), do(a, s)〉

(Aexo) D |= Exo(a) ∧ Poss(a, s)
〈Γ, s〉 ⇒ 〈Γ, do(a, s)〉

(Aclean) Member(σ, Γ), D |= ¬∃n. RPGoal(DoAL(σ), n, s)
〈Γ, s〉 ⇒ 〈Remove(σ, Γ), s〉

D |= ¬∃s′. 〈Γ ‖, s〉 → 〈Γ ′, s′〉, D |= ¬Final(Γ ‖, s),
For all σ s.t. Member(σ, Γ) we have:
D |= ∃n. RPGoal(DoAL(σ), n, s) ∧ Handled(DoAL(σ), s),

D |= ¬CGoal(¬∃s′. Do(adopt(Do(
→
a), NPGoals(s)), now, s′), s),

(Arep) D |= Agent(
→
a) = agt ∧ Do(

→
a , s, s′) ∧ 〈Γ ‖, s′〉 → 〈Γ ′, s′′〉

〈Γ, s〉 ⇒ 〈Cons(
→
a , Γ), do(adopt(Do(

→
a), NPGoals(s)), s)〉

Theorem 1.

D |= ¬CGoal(¬∃s′. Do(adoptRT (ψ, φ), now, s′), s) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ, φ), s′)) ∧ ψ(p′), s).

Theorem 1 and condition (e) above imply that the agent does not have the c-goal not to
execute σθ concurrently with Γ ‖ and possibly other actions next, i.e.:

(i). ¬CGoal(¬∃s′, s′′. Do(adoptRT (DoAL(σθ),♦Φ), now, s′)
∧ DoAL(σθ ‖ Γ ‖, s′, s′′), s).

Moreover, it can be shown that in our framework, an agent acquires the c-goal that ψ
after she adopts it as a subgoal of φ in s, provided that she has the realistic goal at some
level n in s that φ, and that she does not have the c-goal in s that ¬ψ next, i.e.:

Theorem 2.

D |= ∃n. RPGoal(φ, n, s) ∧
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(adoptRT (ψ, φ), s′)) ∧ ψ(p′), s)
⊃ CGoal(ψ, do(adoptRT (ψ, φ), s)).

From (b), (i), and Theorem 2, we have that:

(ii). CGoal(∃s′. DoAL(σθ ‖ Γ ‖, now, s′), do(adoptRT (DoAL(σθ),♦Φ), s)).

(i) ensures that the adopted subgoal σθ is consistent with Γ ‖ in the sense that they can
be executed concurrently, possibly along with other actions in s. (ii) confirms that σθ
is indeed intended after the adoptRT action has happened.

Note that this notion of consistency is a weak one, since it does not guarantee that
there is an execution of the program (σθ ‖ Γ ‖) after the adoptRT action happens, but
rather ensures that the program DoAL(σθ ‖ Γ ‖) is executable. In other words, σθ and
the programs in Γ alone might not be concurrently executable, and additional actions
might be required. We’ll come back to this issue later.

Secondly, we have a transition rule Astep for single stepping the agent program by
executing an intended action from Γ . It says that if: (a) a program σ in Γ can make
a program-level transition in s by performing a primitive action a with program σ′

remaining in do(a, s) afterwards, (b) DoAL(σ) is a realistic p-goal with priority n in s,
and (c) the transition is consistent with the agent’s goals in the sense that she does not
have the c-goal not to execute a in s, then the agent can execute a, and Γ and s can be
updated accordingly.

Once again we have a weak consistency requirement in condition (c) above. Ide-
ally, we would have added to (c) that the agent can continue from do(a, s) in the sense

Remove (for removing all instances of a given item from a list), Replace (for replacing a given
item with another item in a list), etc.

5 We use CGoal(∃s′. DoAL(σ, now, s′), s) or simply CGoal(DoAL(σ), s) as a shorthand for
CGoal(∃s′. Starts(now) ∧ OnPath(s′) ∧ DoAL(σ, now, s′), s).

that she does not have the c-goal not to execute the remaining program σ′ concur-
rently with the other programs in Γ in do(a, s), i.e. that D |= ¬CGoal(¬∃s′. Do(a; (σ′

‖ Γ ‖), now, s′), s). However, note that Γ may not be complete in the sense that it may
include plans that have actions that trigger the adoption of subgoals, for which the ex-
ecution of Γ ‖ waits; but Γ does not have any adopted plans yet that can achieve these
subgoals. Thus Γ ‖ by itself might currently have no complete execution, and will only
become completely executable when all such subgoals have been fully expanded.

For example, consider a new agent for our blocks world domain who has a goal to
eventually build a 3 blocks tower, i.e. ♦3Tower, where 3Tower .= ∃b, b′, b′′. OnTbl(b)∧
On(b′, b) ∧ On(b′′, b′). Also, in addition to the above rules, her plan library Π includes
the following rule:

♦3Tower : [OnTbl(b) ∧ OnTbl(b′) ∧ OnTbl(b′′) ∧ b 6= b′ ∧
Clear(b) ∧ Clear(b′) ∧ Clear(b′′) ∧ ¬Y(b) ∧ G(b′) ∧ Y(b′′)]← σ1,

where σ1 = adoptRT (♦TwrGȲ ,DoAL(σ2));σ2, and σ2 = TwrGȲ ?; stack(b
′′, b′).

This says that, if the agent knows about a non-yellow block b, a distinct green block b′,
and a yellow block b′′ that are all clear and on the table, then her goal of building a 3
blocks tower can be fulfilled by adopting the plan that involves adopting the subgoal to
eventually build a green non-yellow tower, waiting for the achievement of this subgoal,
and then stacking b′′ on b′. Suppose that in response to ♦3Tower, the agent adopted
σ1 as above as a subgoal of this goal using the Asel rule, and thus σ1 is added to Γ .
In the next few steps, she will step through the adopted plan σ1, executing one action
at a time in an attempt to achieve her goal that ♦3Tower. Note that, in SR-APL, the
hierarchical decomposition of a subgoal, e.g. σ1 above, is a two step process. In the
first step, in response to the execution (via Astep) of the adoptRT (♦TwrGȲ ,DoAL(σ2))

action in her plan σ1 in Γ , the agent adopts ♦TwrGȲ as a subgoal of executing the re-
maining program σ2, possibly along with other actions, i.e. w.r.t. DoAL(σ2). Then in
the second step, she uses the Asel rule to select and adopt a plan for the subgoal ♦TwrGȲ .
We assume that the subgoal ♦TwrGȲ must always be achieved before the supergoal. To
do this, we suspend the execution of the supergoal by waiting for the achievement of
the subgoal. This can be specified by the programmer by having the supergoal σ2 start
with the wait action TwrGȲ ? that waits for the subgoal to complete. But this means that
σ2 (and thus σ1) by itself, i.e. without the DoAL construct, might not have a complete
execution as it might get blocked when it reaches TwrGȲ ?. Moreover, since σ2 is a mem-
ber of Γ , Γ ‖ will have a complete execution only when all the subgoals in Γ have
been fully expanded. Thus to deal with this, we use a weak consistency check that does
not perform full lookahead over Γ ‖. However, our semantics ensures that any action
a performed by the agent must not make the concurrent execution of all the adopted
plans of the agent possibly with other actions impossible, i.e. it must be consistent with
DoAL(Γ ‖), since Astep requires that doing a must be consistent with all her DoAL
procedural goals (and other concurrent declarative goals) in her goal hierarchy, i.e. that
D |= ¬CGoal(¬∃s′. Do(a, now, s′), s).

Thirdly, we have a rule Aexo for accommodating exogenous actions, i.e. actions
occurring in the agent’s environment that are not under her control. When such an action

a occurs in s, the agent must update her p-goals by progressing the situation component
of her configuration to do(a, s).

Fourthly, we use the Aclean rule for dropping adopted plans from the procedural
goal-base Γ that are no longer intended in the theoryD. It says that if there is a program
σ in Γ , and executing σ possibly along with other actions is no longer a realistic p-
goal, then σ should be dropped from Γ . This might be required when the occurrence
of an exogenous action forces the agent to drop a plan by making it impossible to
execute or inconsistent with her higher priority realistic p-goals. Recall that our theory
automatically drops such plans from the agent’s goal-hierarchy specified by D.

Finally, we have a rule Arep for repairing an agent’s plans in case she gets stuck,
i.e. when for all programs σ in Γ , the agent has the realistic p-goal that DoAL(σ)
at some level n (and thus all of these DoAL(σ) are still individually executable and
collectively consistent), but together they are not concurrently executable without some
non-σ actions in the sense that Γ ‖ has no program-level transition in s. This could
happen as a result of an exogenous action or as a side effect of our weak consistency
check, as discussed below. The Arep rule says that if: (a) Γ ‖ does not have a program
level transition in s (which ensures that Astep can’t be applied), (b) Γ ‖ is not considered
to be completed in s, (c) every program in Γ is currently a realistic p-goal that has been
handled (which ensures that Aclean and Asel can’t be applied), (d) there is a sequence
of actions

→
a that the agent does not intend not to execute next, and (e)

→
a repairs Γ in

the sense that there is a program level transition of Γ ‖ after
→
a has been executed in s,

then in an attempt to repair Γ , the agent should adopt
→
a at the lowest priority level (i.e.

at NPGoals(s)).
Why do we need this rule? One reason is because the agent could get stuck due to

the occurrence of an exogenous action e, e.g. when e makes the preconditions of a plan
σ in Γ false; note that, DoAL(σ) might still be executable after the occurrence of e, e.g.
if there is an action sequence

→
r (encoded by the DoAL construct) that can be used to

restore the preconditions of σ.
Another reason repair may be needed is that we use partial lookahead when exe-

cuting actions via Astep. For example, assume a domain with actions a, b, and r, all
of which are initially possible. The execution of b makes the preconditions of a false,
while that of r restores them. Our agent has two adopted plans, DoAL(a) and DoAL(b)
in the theory D, and Γ = [a, b]. Note that b; a is not a valid execution of Γ ‖, since the
execution of b invalidates the preconditions of a. But b; r; a is indeed a valid execution
of (DoAL(a) ∧ DoAL(b)). Since we only do partial consistency checking, our seman-
tics allows the agent to perform b as the first action.6 That is, to execute b using the
Astep transition rule, we only need to ensure that b has a program-level transition in s
and that this transition is consistent with the agent’s goals in D, i.e. with DoAL(a) and
DoAL(b), both of which hold. After the execution of b, the agent will get stuck, as there
is no action in the progression of Γ that she can perform. To deal with this, we include
the repair rule that makes the agent plan for and commit to a sequence of actions that
can be used to repair Γ , which for our example is r. Note that, we could have avoided

6 Note that this does not mean that Astep allows the agent to perform an action that makes one
of her goals impossible, e.g. to execute b when such a repair action r is not available.

the need for repairing plans in this case by strengthening the conditions of the Astep rule
to do full lookahead by expanding all subgoals in Γ . However, this requires modeling
the plan selection/goal decomposition process as part of the consistency check, which
we leave for future work. We could have also relied on plan failure recovery techniques
[28]. Finally, our repair rule does a form of conformant planning; more sophisticated
forms of planning such as synthesizing conditional plans that include sensing actions
could also be performed.

When the agent has complete information, there must be a repair plan available
to the agent (whose actions can be performed by the agent herself) if her goals are
consistent. In our framework, since the SSA for G drops all inconsistent goals/plans,
the agent’s p-goals are always consistent, and thus if complete information is assumed,
it is always possible to repair the remaining plans. Consider our previous example: if the
agent has DoAL(a) and DoAL(b) as her realistic p-goals, Γ = [a, b], and if she has the
c-goal not to execute an action from Γ ‖ (i.e. CGoal(¬∃s′. 〈Γ ‖, now〉 → 〈Γ ′, s′〉, s)),
then it must be the case that she does not have the c-goal not to execute Γ ‖ along
with other actions (e.g. r), i.e. ¬CGoal(¬∃s′. DoAL(a‖b, now, s′), s). Otherwise, one
of DoAL(a) or DoAL(b) would have been dropped by the SSA for G as an agent’s
p-goals are always consistent with each other. Thus there must be a plan

→
a that can

repair Γ . Since the agent has complete information, this plan must work in all her
epistemic alternatives (our repair rule does a form of conformant planning). Also, since
by definition, the agent of the “other actions” in the DoAL construct is the agent herself,
this means that she is also the agent of

→
a . If on the other hand the agent has only

incomplete information, then a repair plan may need to perform sensing actions and
branch on the results. We leave this kind of conditional planning for future work.

Also, note that this rule allows the agent to procrastinate in the sense that in addition
to the plan that actually repairs Γ , she is allowed to adopt and execute actions that are
unnecessary. This could be avoided by constraining the repair plan

→
a , e.g. by requiring

it to be the shortest or the least costly plan etc. We leave this for future work.
In our operational semantics, we want to ensure that the procedural goals in Γ are

consistent with those in the theory D before expansion of a subgoal/execution of an
action occurs; so we assume that the Aclean rule has higher priority than Asel and Astep.
We can do this by adding appropriate preconditions to the antecedent of the latter, which
we leave out for brevity.

To summarize, in SR-APL we formalize both declarative goals and plans uniformly
in the same goal hierarchy specified by D. We maintain the consistency of adopted
declarative and procedural goals by ensuring that there is at least one path known to the
agent over which all of her adopted declarative goals hold and that includes the concur-
rent execution of all of her adopted plans, possibly along with other actions. Whenever
the agent’s goals/plans become inconsistent due to some external interference, the suc-
cessor state axiom for G in D will drop some of the adopted goals/plans if necessary,
respecting their priority, and consistency of the goal-base is automatically restored. We
also have a procedural goal-base Γ containing the adopted plans in D, whose sole pur-
pose is to ensure that the agent does not procrastinate w.r.t. her adopted plans. The
set of transition rules of SR-APL allows an SR-APL agent to select, adopt, and execute
plans from the plan library and thus serves as SR-APL’s practical reasoning component.

While adopting plans and executing actions, we use a weak consistency check, and thus
avoid searching over the entire plan-space while ensuring consistency. SR-APL also
includes a repair rule that can be used to repair plans if the agent gets stuck (a) as a
result of our weak consistency check (and lack of lookahead in plan selection), (b) due
to external interferences, or (c) due to the existence of an adopted declarative goal for
which there is no plan specified in the plan library.

Let us now define some useful notions of program execution in SR-APL. A labeled
execution trace T relative to a theory D is a (possibly infinite) sequence of configura-
tions 〈Γ0, s0〉

l0⇒ 〈Γ1, s1〉
l1⇒ 〈Γ2, s2〉

l2⇒ 〈Γ3, s3〉
l3⇒ · · ·, s.t. Γ0 = [nil], s0 = S0 is the

actual initial configuration, and for all 〈Γi, si〉, the agent level transition rule li can be
used to obtain 〈Γi+1, si+1〉. Here li is one of Asel, Astep, Aexo, Aclean, and Arep, and
in the absence of exogenous actions, li can be one of Asel, Astep, Aclean, and Arep. We
sometimes suppress these labels. A complete trace T relative to a theory D is a finite

labeled execution trace relative to D, 〈Γ0, s0〉
l0⇒ · · · ln−1⇒ 〈Γn, sn〉, s.t. 〈Γn, sn〉 does

not have an agent level transition, i.e. 〈Γn, sn〉;.
For our blocks world example, we can show that our SR-APL agent for this domain

will not adopt inconsistent plans as seen in Section 2 and will in fact achieve all her
goals. Note that, when arbitrary exogenous actions can occur, even the best laid plans
can fail. Here we only consider the case of where exogenous actions are absent. We
model this using the following axiom, which we callNoExo: ∀a. ¬exo(a). Given this,
we can show that:

Proposition 1 (a). There exists a complete trace T relative to DBW ∪ {NoExo}
for our blocks world program. (b). For all such complete traces T = 〈Γ0, s0〉 ⇒
〈Γ1, s1〉 ⇒ · · · ⇒ 〈Γn, sn〉, we have:DBW∪{NoExo} |= Final(Γ ‖n , sn)∧TwrGȲ (sn)∧
TwrBR̄(sn). (c). There are no infinite traces relative to DBW ∪ {NoExo}.

Thus when exogenous actions cannot occur, any execution of our SR-APL blocks world
agent achieves all her goals.

6 Rationality of SR-APL Agents

We next prove some rationality properties that are satisfied by SR-APL agents. We
only consider the case when exogenous actions do not occur. We could have considered
exogenous actions, but in that case we would have to complicate the framework further,
e.g. by assuming a fair environment that gives a chance to the agent to perform actions.
Moreover, it is not obvious what rational behavior means in such contexts.

First of all, in each situation, for all domains D that are part of an SR-APL agent,
the knowledge and c-goals/intentions as specified by D must be consistent:7

Theorem 3 (Consistency of Knowledge and CGoals).

D |= ∀s. ¬Know(false, s) ∧ ¬CGoal(false, s).

7 This follows independently from the underlying agent theory.

We can also show that the procedural goals in Γ and the declarative and procedural
goals in the theory D ∪ {NoExo} remain consistent. Let’s say that the procedural
goals in Γ are consistent with those in the theory D in situation s in a configuration
〈Γ, s〉 iff for all σ s.t. Member(σ, Γ), we have D |= CGoal(DoAL(σ), s). Also, define
D ¯Exo

.
= D ∪ {NoExo}. We have that:

Theorem 4 (Consistency of Γ and D ¯Exo). If T = 〈Γ0, s0〉 ⇒ 〈Γ1, s1〉 ⇒ · · · ⇒
〈Γn, sn〉 is a complete trace of an SR-APL agent w.r.t. a theory D ¯Exo, then for all i s.t.
0 ≤ i < n, we have:
(a). If si+1 = do(a, si) for some a, then the procedural goals in Γi are consistent with
those in the theory D ¯Exo in si,
(b). If si = si+1, then there exists j s.t. 0 < i < j ≤ n and the goals in Γj are
consistent with those in the theory D ¯Exo in sj ,
(c). The procedural goals in Γn are consistent with those in the theory D ¯Exo in sn.

(a) and (c) are self-explanatory. (b) shows that whenever there is some procedural goal
in Γi that is not a goal w.r.t. the theoryD ¯Exo, the Aclean rule will remove it from Γi, and
eventually consistency is restored.8 It follows from Theorem 4 that in all configurations
〈Γ, s〉 where the plans in Γ are consistent with those in the theory D ¯Exo in s, the agent
intends to execute the programs in Γ concurrently starting in s, possibly with other
actions, i.e. D ¯Exo |= CGoal(∃s′. DoAL(Γ ‖, now, s′), s).

Finally, our agents evolve in a rational way:

Theorem 5 (Rationality of Actions in a Trace). If T = 〈Γ0, s0〉
l0⇒ 〈Γ1, s1〉

l1⇒
· · · ln−1⇒ 〈Γn, sn〉 is a trace of an SR-APL agent relative to a theory D ¯Exo, then for all i
s.t. 0 < i ≤ n and si = do(a, si−1), we have:

(a). D ¯Exo |= ¬CGoal(¬∃s′. Do(a, now, s′), si−1).

(b). If li−1 = Astep then there exist σ, σ′ s.t. Member(σ, Γi−1) and

D ¯Exo |= 〈σ, si−1〉 → 〈σ′, do(a, si−1)〉 ∧ CGoal(∃s′. DoAL(a, now, s′), si−1).

(c). D ¯Exo |= ∀φ, ψ, n. a = adoptRT (ψ, φ) ∨ a = adopt(ψ, n) ⊃
¬CGoal(¬∃s′, p′. Starts(s′) ∧ Suffix(p′, do(a, s′)) ∧ ψ(p′), si−1).

This states that SR-APL is sound in the sense that any trace produced by the APL
semantics is consistent with the agent’s chosen goals. To be precise, (a) if an SR-APL
agent performs the action a in situation si−1, then it must be the case that she does
not have the intention not to execute a next in si−1. Moreover, (b) if a is performed
via Astep, then a, which must have come from the procedural goal-base Γ , is indeed
intended in si−1 in the sense that she has the intention to execute a possibly along with
some other actions next. Finally, (c) if a is the action of adopting a subgoal ψ w.r.t. a
supergoal φ or that of adopting a goal ψ at some level n, then the agent does not have
the c-goal in si−1 not to bring about ψ next.

8 Recall that applications of Aclean do not change the situation.

7 Discussion and Conclusion

Based on a “committed agent” variant of our rich theory of prioritized goal/subgoal
dynamics [13], we have developed a specification of an APL framework that handles
prioritized goals and maintains the consistency of adopted declarative and procedural
goals. We also showed that an agent specified in this language satisfies some strong ra-
tionality properties. While doing this, we addressed some fundamental questions about
rational agency. We model an agent’s concurrent commitments by incorporating the
DoAL construct in her adopted plans, which allows her to be open towards future com-
mitments to plans, using a procedural goal-base Γ to prevent procrastination. We for-
malized a weak notion of consistency between goals and plans that does not require the
agent to expand all adopted goals while checking for consistency.

While SR-APL agents rely on a user-specified plan library, they can achieve a goal
even if such plans are not specified. Indeed the Arep rule can be used as a first principles
planner for goals that can be achieved using sequential plans. Thus, given a goal ♦Φ,
all the programmer needs to do to trigger the planner is to add a plan of the form
(♦Φ : true ← Φ?) to the plan library Π . Since the program Φ? is neither executable
nor final, it will eventually trigger the Arep rule, which will make the agent adopt a
sequence of actions to achieve Φ.

Here, we focused on developing an expressive agent programming framework that
yields a rational/robust agent without worrying about tractability. Thus our framework
is a specification and model of an ideal APL rather than a practical APL. In the future,
we would like to investigate restricted versions of SR-APL that are practical, with an
understanding of how they compromise rationality. We think this can be done. For in-
stance if we assume a finite domain, then reasoning with the underlying theory should
be decidable. We could adapt techniques from partial order planning such as summary
information/causal links to support consistency maintenance. We could also simply find
a global linear plan and cache it, using summary information to revise it when necessary.
There are some controller synthesis techniques that can deal with temporally extended
goals [18, 2].

Also, it would be desirable to study a version where the agent fully expands an ab-
stract plan and checks its executability before adopting it. Finally, while our underlying
agent theory supports arbitrary temporally extended goals, in SR-APL we only consider
achievement goals. We would like to relax this in the future.

References

1. M. E. Bratman. Intentions, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, USA, 1987.

2. D. Calvanese, G. De Giacomo, and M. Y. Vardi. Reasoning about Actions and Planning in
LTL Action Theories. In Proc. KR’02, pages 593–602, 2002.

3. B. J. Clement and E. H. Durfee. Theory for Coordinating Concurrent Hierarchical Planning
Agents Using Summary Information. In Proc. AAAI’99, pages 495–502, 1999.

4. B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract Reasoning for Planning and Coor-
dination. J. of Artificial Intelligence Research, 28:453–515, 2007.

5. M. Dastani. 2APL: A Practical Agent Programming Language. J. of AAMAS, 16(3):214–248,
2008.

6. G. De Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a Concurrent Programming
Language Based on the Situation Calculus. Artificial Intelligence, 121:109–169, 2000.

7. K. V. Hindriks, F. S. de Boer, W. van der Hoek, and J.-J. Ch. Meyer. Agent Programming with
Declarative Goals. In Intelligent Agents VII : Agent Theories, Architecture, and Languages,
vol. 1986 of LNAI, pages 228–243. Springer-Verlag, 2000.

8. K. V. Hindriks, W. van der Hoek, and M. B. van Riemsdijk. Agent Programming with
Temporally Extended Goals. In Proc. AAMAS’09, pages 137–144, 2009.

9. J. F. Horty and M. E. Pollack. Evaluating New Options in the Context of Existing Plans.
Artificial Intelligence, 127:199–220, 2001.

10. F. F. Ingrand, M. P. Georgeff, and A. S. Rao. An Architecture for Real-Time Reasoning and
System Control. IEEE Expert, 7(6):34–44, 1992.

11. S. M. Khan. Rational Agents : Prioritized Goals, Goal Dynamics, and Agent Programming
Languages with Declarative Goals (in preparation). Ph.D. thesis, York University, Canada,
2011.

12. S. M. Khan and Y. Lespérance. ECASL: A Model of Rational Agency for Communicating
Agents. In Proc. AAMAS’05, pages 762–769, 2005.

13. S. M. Khan and Y. Lespérance. A Logical Framework for Prioritized Goal Change. In Proc.
AAMAS’10, pages 283–290, 2010.

14. S. M. Khan and Y. Lespérance. Towards a Rational Agent Programming Language with
Prioritized Goals. In Working Notes of DALT VIII, pages 18–33, 2010.

15. S. M. Khan and Y. Lespérance. Prioritized Goals and Subgoals in a Logical Account of Goal
Change – A Preliminary Report. In Proc. DALT VII, vol. 5948 of LNAI, pages 119–136,
Springer-Verlag, 2010.

16. S. M. Khan and Y. Lespérance. SR-APL: A Model for a Programming Language for Rational
BDI Agents with Prioritized Goals (Extended Abstract). In Proc. AAMAS’11, pages 1251–
1252, 2011.

17. H. J. Levesque, F. Pirri, and R. Reiter. Foundations for a Calculus of Situations. Electronic
Transactions of AI (ETAI), 2(3–4):159–178, 1998.

18. M. Pistore and P. Traverso. Planning as Model Checking for Extended Goals in Non-
Deterministic Domains. In Proc. IJCAI’01, pages 479–484, 2001.

19. A. S. Rao. AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language. In
Agents Breaking Away, vol. 1038 of LNAI, pages 42–55. Springer-Verlag, 1996.

20. R. Reiter. Knowledge in Action. Logical Foundations for Specifying and Implementing Dy-
namical Systems. MIT Press, 2001.

21. S. Sardiña, L. de Silva, and L. Padgham. Hierarchical Planning in BDI Agent Programming
Languages: A Formal Approach. In Proc. AAMAS’06, pages 1001–1008, 2006.

22. S. Sardiña and L. Padgham. A BDI Agent Programming Language with Failure Recovery,
Declarative Goals, and Planning. J. of AAMAS (to appear), 2010.

23. R. Scherl and H. J. Levesque. Knowledge, Action, and the Frame Problem. Artificial Intel-
ligence, 144(1–2):1–39, 2003.

24. S. Shapiro and G. Brewka. Dynamic Interactions Between Goals and Beliefs. In Proc.
IJCAI’07, pages 2625–2630, 2007.

25. S. Shapiro, Y. Lespérance, and H. J. Levesque. Goal Change in the Situation Calculus. J. of
Logic and Computation, 17(5):983–1018, 2007.

26. J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and Avoiding Interference between
Goals in Intelligent Agents. In Proc. IJCAI’03, pages 721–726, 2003.

27. M. B. van Riemsdijk, M. Dastani, and J.-J. Ch. Meyer. Goals in Conflict: Semantic Founda-
tions of Goals in Agent Programming. J. of AAMAS, 18(3):471–500, 2009.

28. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative and Procedural Goals
in Intelligent Agent Systems. In Proc. KR’02, pages 470–481, 2002.

