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Abstract

This paper describes a Java implementation of the RS1 Rough Sets
algorithm, that leverages the use of a Data Base Management System
(DBMS) with Structured Query Language (SQL). DBMS use ensures that
large information tables can be processed by the algorithm, while keeping
the computational resource needs of the Java class low.

The algorithm is implemented within a single Java class, making it ideal
not only for Rough Set research, but as an add-on to non Rough Set
projects.
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1 Introduction

RS1 is a Rough Sets induction algorithm developed by Wong, Ziarko and Ye in
1986 for generating decision rules based on a table of inconsistent information.[1]
A Java implementation of the RS1 algorithm is described. The algorithm logic
was written in the Java language, while the actual data manipulation was per-
formed through the Java DataBase Connectivity (JDBC) package. The rela-
tional database used to manage the actual data set was the open source Post-
gresql database package which supports the SQL query language. This Java
implementation is being developed in the context of a diversity of applications
of Rough Sets techniques for dealing with inconsistent and incomplete knowl-
edge bases.[8, 6, 5, 4, 3, 2, 7]

2 Objective

The objective of this research is the implementation of an inductive Rough Sets
algorithm to serve as a kernel from which additional Rough Sets research can
be performed. While much work has been done, commercially available imple-
mentations of RS algorithms are few. Most implementations are experimental
and monolithic. (eg: In the case of Rosetta[9], the implementation is a closed
package who’s capabilities cannot be extended.) In this implementation, the
processing is done within a single class file, thus making it relatively simple to
integrate into other applications.

Rough Sets is based on set theory and requires vast amounts of set operations
which DBMS are ideally suited to perform. Traditionally, these set operations
were performed locally within the algorithm development environment. This
ensured a localized treatment of the set information, sometimes at the expense
of resource efficiency, as the mechanics of data manipulation took second place
to the primary objective of implementing Rough Sets.

The novelty of our work lies in the use of a DBMS to perform the data
processing functions of the Rough Sets algorithm. In most implementations[9],
DBMS use is limited to the import or export of data to and from the Rough Set
implementation. This is unfortunate, because DBMSs are designed to handle
large volumes of data and efficiently manipulate them based on both queries and
constraints. Because the DBMS access is done through the JDBC package, the
overhead of accessing information tables is kept at a minimum while ensuring
that a maximum number of data sources can be used. This research is meant
as a proof of concept as to the use of Data Base Management Systems (DBMS)
with Rough Set algorithms.

3 RS1 algorithm description
The RS1 algorithm is an algorithm that functions by incrementally selecting a

series of attributes around which to “pivot”, generating rule sets of increasing
complexity until all examples in the universe are covered.



At first, each attribute (A4;) is individually processed, and for each of it’s
possible values (V;;), a subset (S;;) of the universe (E) is generated(1l). Each
of these subsets can be part of the Upper Bound(Y'), the Lower Bound (Y) or
not part of anything.

in: i Sij = subset(E, Az = V;J) (].)

i=1 j=1

The set of all positive class examples is generated as a subset (S;), and the
attribute subset (S;;) is part of the Lower Bound if it intersects with this class
subset(3). Likewise, an attribute subset (S;;) is part of the Upper Bound if it
is included within this class subset(2).

Y < (S;NS:) (2)
Y — (5 €54) (3)

Then a quality value represented by « is generated for each attribute (4).
The attribute with the largest value of a then becomes the pivot attribute for
the next iteration. The universe of possible elements is cleared of rows that are
already covered by the rule set using the equation (5).

Y -Y

E=E-[(E-Y)UY] (5)

Using the pivot attribute, the list of attribute is traversed again and new
subsets are generated for each of the value combinations for pivot and attribute.
The Lower and Upper bounds are again generated and the attribute with the
best « is joined to the pivot, so that we now have a two attribute pivot.

The process is repeated again, adding attributes to the pivot, until we either
run out of attributes or the universe becomes empty.

4 Implementation description

The implementation in Java is based on a slightly modified RS1 algorithm. The
implementation is a restriction of the RS1 algorithm as only one positive deci-
sion class is currently supported and an unique identifying attribute is needed.
In order to optimize for a large, real-world, application a DBMS was used to
store and retrieve the the set information using SQL queries. The source code
is not reviewed here for space considerations; instead the implementation of set
operations using SQL is examined as this forms the cornerstone of the imple-
mentation.



4.1 A rational for the use of SQL

Data Base Management Systems (DBMS) are fairly mature, robust and stan-
dardized systems. They are able to store and process large amounts of tabular
data through the use of Structured Query Language (SQL).

The use of a DBMS greatly reduces the amount of code required to imple-
ment the RS1 algorithm because it allows the actual mechanics of information
manipulation to be dispatched to the DBMS. Instead of fine-tuning the algo-
rithm to the particulars of file I/O, we can rely on the engineering embedded
within the DBMS to self-optimize the operations required to implement the RS1
algorithm.

Furthermore, offloading the table operations to the DBMS ensures that the
memory consumption by the Rough Set algorithm will be low. Only the table
and view names need to be kept in local memory by the Java class, the heavy
I/0O operations being handled by the DBMS. Most of these have built-in memory
space management and internal query caching and optimization. This shelters
the Java class from design decisions that are out of the scope of the Rough Sets
abstraction, such as selecting an internal set storage method.

Finally, SQL is a sufficiently powerful language to support most set opera-
tions needed by a Rough Set algorithm including the subset of, intersection of
and union of functions. It is relatively trivial to code these operations because
SQL frees us from array and object-space considerations. The generation of
subsets is achieved through the generation of temporary tables or views which
can be discarded to reduce storage space utilization.

4.2 Implementing set operations using SQL

Within the DBMS, an element of a set is represented as a row within a table and
SQL queries are used to manipulate the set elements as desired. The universe
is represented by a master table that contains the data that is to be processed
by RS1.

In the algorithm described in Section 3, two basic types of operations need to
be performed. The generation of sub-sets based on attribute value constraints
and the set operators N and C.

4.2.1 Generating sub-sets:

In order to generate the subsets needed in (1), the possible values of all attributes
must be known. To do this, we use the SQL query listed in Example 1, from
which we can obtain the possible values for an attribute. This is repeated
for each attribute, enabling the RoughSet class to generate all possible value
combinations that need to be verified.

Example 1 SELECT DISTINCT ATTRIB FROM TABLE

To generate the sets we could use nested sub-queries. However, some SQL im-
plementations only have limited support for nested sub-queries, which would



make portability an issue.

Instead, sub-sets can be generated from the data using either views or tables.
Generating the subset using a table means creating a separate table to which
rows are copied (Examples 2 and 3). This takes up disk space, and the time
needed to copy the record. Because a view is table that is actually a query
of another table, no additional disk space is needed(Example 4). However, a
performance penalty occurs because a query is run internally by the DBMS.

Example 2 CREATE TABLE TMP3976 () INHERITS (MAINTABLE)

Example 3 INSERT INTO TMP3976 SELECT * from MAINTABLE WHERE
eyes="Blue’ AND hair="Red’

Example 4 CREATE VIEW TMP3976 AS SELECT * FROM MAINTABLE
WHERE eyes=’"Blue’ AND hair="Red’

4.2.2 Coding set functions:

After the sub-sets have been generated, both the intersection function and the
inclusion functions need to be implemented in order to determine if (3) or (2)
occur.

In the case of (2), the result needed is the presence of data in the intersection
between two sets. This is implemented in Example 5 where the number of
elements within the intersection are counted and returned to the Java class.

Example 5 SELECT COUNT(ITEM) FROM TABLE1 WHERE ITEM IN
(SELECT ITEM FROM TABLE2)

A variation of this query is used in Example 6 to implement (3). In order
for TABLEL to be included in TABLE2, all the elements from it must be part of
TABLE2. Therefore, the count returned from the SQL query most be 0.

Example 6 SELECT COUNT(ITEM) FROM TABLE! WHERE ITEM NOT
IN (SELECT ITEM FROM TABLE2)

5 Testing of algorithm

The implementation was tested on two sample data sets and the output com-
pared with hand-derived expected results. The two data sets were those pre-
sented in [1] which have been reproduced in tables 1 and 2. The output results
are provided in the remainder of this section. A partial trace of the algorithm
for the data pesented in table 1 is provided in Appendix A.



id weight | sex | class

item | height | hair eyes | class El Heavy F +
1 Short | Dark Blue - E2 Heavy M +
2 Tall Dark Blue - E3 | Medium | M -
3 Tall Dark | Brown - E4 | Medium | F -
4 Tall Red Blue + E5 Light M +
5 Short | Blond | Blue + E6 Light M +
6 Tall | Blond | Brown - E7 Light F +
7 Tall | Blond | Blue + ES8 Light F -
8 Short | Blond | Brown - E9 Light M -
E10 | Light F -

Table 1: Test Data Set 1

height="Short” — class="+’ covers 3 row(s
— class="+" covers 5 row
— class="+’ covers 4 row
— class="+’ covers 5 row(s

height="Tall’
hair="Blond’
eyes="Blue’

3 positive row(s

Table 2: Test Data Set 2
1 positive row(s
2 positive row(s
2 positive row(s
(

Table 3: Upper bound rules for Table 1.

5.1 Results after processing table 1

The following results were consistent with the hand-derived results for the in-

formation contained in table 1.

5.2 Results after processing table 2

The following results were consistent with the hand-derived results for the in-

formation contained in table 2.

6 Conclusion

The implementation of the RS1 Rough Sets Inductive Algorithm with a Database
Management System was successful. The expected results presented in [1] cor-

hair="Blond’ A eyes='Blue’ — class="+’ covers 2 positive row(s).

hair="Red’

— class="+ covers 1 postive row(s).

Table 4: Lower bound rules for Table 1, without the Upper bound.



weight="Light’ — class="+’ covers 6 row(s) (3 positive row(s)).
sex="F’ — class="+" covers 5 row(s) (2 positive row(s)).
sex="M’ — class="+" covers 5 row(s) (3 positive row(s)).

Table 5: Upper bound rules for Table 2.

weight="Heavy’ A sex="F’ — class="+’ covers 1 positive row(s).
weight="Heavy’ A sex="M’— class="+’ covers 1 positive row(s).

Table 6: Lower bound rules for Table 2, without the Upper bound.

responded to those returned by our RS1 Java implementation, and are listed in
Sections 5.1 and 5.2.

A Sample program trace
/*** Initialise ***/

RoughSet: Connecting to database.

RoughSet: Loaded column:[item, height, hair, eyes, class, ]
RoughSet: Checking for Class Column [class].

RoughSet: Checking for ID Column [item].

/*** Generate a sub-set of all positive class rows. ***/

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7574 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7574 SELECT
* FROM roughtest WHERE class=’+’].

createSubSet: Inserted [3] rows into table.

/*** Find first pivot. ***/

generateRules: Working on Attribute [height].
generateRules: Using table [TMP3769] to store Lower Bound.
generateRules: Using table [TMP1806] to store Upper Bound.

/*** For each possible value of the attribute, generate a subset of rows. ***/
/*** For each subset decide if it belong to the upper or lower bound. ***/

generateRules: Working on Attribute [height] with value [Short].

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1311 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1311 SELECT



* FROM roughtest WHERE height=’Short’].
createSubSet: Inserted [3] rows into table.
generateRules: Working on Attribute [height] with value [Tall].
createSubSet: Will write out a subset to table [TMP2118].
createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP2118 () INHERITS
(roughtest)].
createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP2118 SELECT
* FROM roughtest WHERE height=’Tall’].
createSubSet: Inserted [5] rows into table.

/*** Generate alpha based on upper and lower bound. ***/

generateRules: Attribute [height] has an alpha value of [0.0].
generateRules: This Alpha of [0.0] is better than best Alpha of [-1.0].

/*¥** Try with next attribute. ***/

generateRules: Working on Attribute [hair].
generateRules: Using table [TMP6874] to store Lower Bound.
generateRules: Using table [TMP2093] to store Upper Bound.

/*** For each possible value of the attribute, generate a subset of rows. ***/
/*** For each subset decide if it belongs to the upper or lower bound. ***/

generateRules: Working on Attribute [hair] with value [Blond].

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1991 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1991 SELECT
* FROM roughtest WHERE hair=’Blond’].

createSubSet: Inserted [4] rows into table.

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1866 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1866 SELECT
* FROM roughtest WHERE hair=’Dark’].

createSubSet: Inserted [3] rows into table.

generateRules: Working on Attribute [hair] with value [Red].

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7007 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7007 SELECT
* FROM roughtest WHERE hair=’Red’].

createSubSet: Inserted [1] rows into table.

/*** Generate alpha based on upper and lower bound. ***/

generateRules: Attribute [hair] has an alpha value of [0.5].
generateRules: This Alpha of [0.5] is better than best Alpha of [0.0].

/*¥** Try with next attribute. ***/



generateRules: Working on Attribute [eyes].
generateRules: Using table [TMP2053] to store Lower Bound.
generateRules: Using table [TMP1910] to store Upper Bound.

/*** For each possible value of the attribute, generate a subset of rows. ***/
/*** For each subset decide if it belong to the upper or lower bound. ***/

generateRules: Working on Attribute [eyes] with value [Blue].

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP9680 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP9680 SELECT
* FROM roughtest WHERE eyes=’Blue’].

createSubSet: Inserted [5] rows into table.

generateRules: Working on Attribute [eyes] with value [Brown].

createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1701 () INHERITS
(roughtest)].

createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1701 SELECT
* FROM roughtest WHERE eyes=’Brown’].

createSubSet: Inserted [3] rows into table.

/*** Generate alpha based on upper and lower bound. ***/
generateRules: Attribute [eyes] has an alpha value of [0.375].

/*¥** End of first iteration, dump the pivot attribute’s rules ***/
/*** to the results table and prune the universe data table. ***/

generateRules: Best Attribute was [hair] with an Alpha of [0.5],
storing lower bound and recursing.
storeRules: Storing lower bound rule(s) over [1] columns from table
[TMP6874] to table [RULEL].
storeRules: Will send [SELECT DISTINCT hair, class FROM TMP6874]
as SQL Soup.
storeRules: Will send [INSERT INTO RULEL ( hair, class) VALUES ( ’Red’, ’+7)]
as SQL Soup.
storeRules: Storing upper bound rule(s) over [1] columns from table
[TMP6874] to table [RULEH].
storeRules: Will send [SELECT DISTINCT hair, class FROM TMP6874]
as SQL Soup.
storeRules: Will send [INSERT INTO RULEH ( hair, class) VALUES ( ’Red’, ’+7)]
as SQL Soup.
storeRules: Storing upper bound rule(s) over [1] columns from table
[TMP2093] to table [RULEH].
storeRules: Will send [SELECT DISTINCT hair, class FROM TMP2093]

as SQL Soup.

storeRules: Will send [INSERT INTO RULEH ( hair, class) VALUES ( ’Blond’, ’+’)]
as SQL Soup.

storeRules: Will send [INSERT INTO RULEH ( hair, class) VALUES ( ’Blond’, ’-’)]



as SQL Soup.
storeRules: Will send [INSERT INTO RULEH ( hair, class) VALUES ( ’Red’, ’+7)]
as SQL Soup.
createSubSet: Creating table with SQL SOUP [CREATE TABLE TMP4285 () INHERITS
(roughtest)].
createSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP4285 SELECT
* FROM roughtest WHERE class=’+’].
createSubSet: Inserted [3] rows into table.

/*** Generate a sub-set of all positive class rows. ***/

generateRules: Created table [TMP4285] as positive reference class.
generateRules: Pivoting on at least [hair].

/*** Using hair as a pivot, repeat process for ***/
/*** both left-over attributes and pick best alpha. ***/

generateRules: Working on Attribute [height].

...

generateRules: Attribute [height] has an alpha value of [0.5].

generateRules: This Alpha of [0.5] is better than best Alpha of [-1.0].

...

generateRules: Attribute [eyes] has an alpha value of [1.0].

generateRules: This Alpha of [1.0] is better than best Alpha of [0.5].

generateRules: Best Attribute was [eyes] with an Alpha of [1.0],
storing lower bound and recursing.

/*** Second best attribute is eyes, dump the pivot ***/
/*** attribute’s to the results table and prune the Universe data table.***/

generateRules: No rows left in universe, exit.
*x*x Finished processing ***
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