
A Java implementationof the RS1 algorithm using SQLRobert H. Warrenwarren�s.uregina.a Julia A. Johnsonjulia�s.laurentian.aDepartment of Computer SieneUniversity of ReginaRegina, SaskathewanCanada S4S 0A2Tehnial Report TR-2000-03ISBN 0-7731-0399-6AbstratThis paper desribes a Java implementation of the RS1 Rough Setsalgorithm, that leverages the use of a Data Base Management System(DBMS) with Strutured Query Language (SQL). DBMS use ensures thatlarge information tables an be proessed by the algorithm, while keepingthe omputational resoure needs of the Java lass low.The algorithm is implemented within a single Java lass, making it idealnot only for Rough Set researh, but as an add-on to non Rough Setprojets.Keywords Java, Rough Set Implementation, Database Management Sys-tem

1

1 IntrodutionRS1 is a Rough Sets indution algorithm developed by Wong, Ziarko and Ye in1986 for generating deision rules based on a table of inonsistent information.[1℄A Java implementation of the RS1 algorithm is desribed. The algorithm logiwas written in the Java language, while the atual data manipulation was per-formed through the Java DataBase Connetivity (JDBC) pakage. The rela-tional database used to manage the atual data set was the open soure Post-gresql database pakage whih supports the SQL query language. This Javaimplementation is being developed in the ontext of a diversity of appliationsof Rough Sets tehniques for dealing with inonsistent and inomplete knowl-edge bases.[8, 6, 5, 4, 3, 2, 7℄2 ObjetiveThe objetive of this researh is the implementation of an indutive Rough Setsalgorithm to serve as a kernel from whih additional Rough Sets researh anbe performed. While muh work has been done, ommerially available imple-mentations of RS algorithms are few. Most implementations are experimentaland monolithi. (eg: In the ase of Rosetta[9℄, the implementation is a losedpakage who's apabilities annot be extended.) In this implementation, theproessing is done within a single lass �le, thus making it relatively simple tointegrate into other appliations.Rough Sets is based on set theory and requires vast amounts of set operationswhih DBMS are ideally suited to perform. Traditionally, these set operationswere performed loally within the algorithm development environment. Thisensured a loalized treatment of the set information, sometimes at the expenseof resoure eÆieny, as the mehanis of data manipulation took seond plaeto the primary objetive of implementing Rough Sets.The novelty of our work lies in the use of a DBMS to perform the dataproessing funtions of the Rough Sets algorithm. In most implementations[9℄,DBMS use is limited to the import or export of data to and from the Rough Setimplementation. This is unfortunate, beause DBMSs are designed to handlelarge volumes of data and eÆiently manipulate them based on both queries andonstraints. Beause the DBMS aess is done through the JDBC pakage, theoverhead of aessing information tables is kept at a minimum while ensuringthat a maximum number of data soures an be used. This researh is meantas a proof of onept as to the use of Data Base Management Systems (DBMS)with Rough Set algorithms.3 RS1 algorithm desriptionThe RS1 algorithm is an algorithm that funtions by inrementally seleting aseries of attributes around whih to \pivot", generating rule sets of inreasingomplexity until all examples in the universe are overed.2

At �rst, eah attribute (Ai) is individually proessed, and for eah of it'spossible values (Vij), a subset (Sij) of the universe (E) is generated(1). Eahof these subsets an be part of the Upper Bound(Y), the Lower Bound (Y) ornot part of anything. mXi=1 niXj=1 Sij = subset(E;Ai = Vij) (1)The set of all positive lass examples is generated as a subset (S+), and theattribute subset (Sij) is part of the Lower Bound if it intersets with this lasssubset(3). Likewise, an attribute subset (Sij) is part of the Upper Bound if itis inluded within this lass subset(2).Sij � Y () (Sij \ S+) (2)Sij � Y () (Sij � S+) (3)Then a quality value represented by � is generated for eah attribute (4).The attribute with the largest value of � then beomes the pivot attribute forthe next iteration. The universe of possible elements is leared of rows that arealready overed by the rule set using the equation (5).� = 1� jY � Y jjEj (4)E = E � [(E � Y) [Y ℄ (5)Using the pivot attribute, the list of attribute is traversed again and newsubsets are generated for eah of the value ombinations for pivot and attribute.The Lower and Upper bounds are again generated and the attribute with thebest � is joined to the pivot, so that we now have a two attribute pivot.The proess is repeated again, adding attributes to the pivot, until we eitherrun out of attributes or the universe beomes empty.4 Implementation desriptionThe implementation in Java is based on a slightly modi�ed RS1 algorithm. Theimplementation is a restrition of the RS1 algorithm as only one positive dei-sion lass is urrently supported and an unique identifying attribute is needed.In order to optimize for a large, real-world, appliation a DBMS was used tostore and retrieve the the set information using SQL queries. The soure odeis not reviewed here for spae onsiderations; instead the implementation of setoperations using SQL is examined as this forms the ornerstone of the imple-mentation. 3

4.1 A rational for the use of SQLData Base Management Systems (DBMS) are fairly mature, robust and stan-dardized systems. They are able to store and proess large amounts of tabulardata through the use of Strutured Query Language (SQL).The use of a DBMS greatly redues the amount of ode required to imple-ment the RS1 algorithm beause it allows the atual mehanis of informationmanipulation to be dispathed to the DBMS. Instead of �ne-tuning the algo-rithm to the partiulars of �le I/O, we an rely on the engineering embeddedwithin the DBMS to self-optimize the operations required to implement the RS1algorithm.Furthermore, o�oading the table operations to the DBMS ensures that thememory onsumption by the Rough Set algorithm will be low. Only the tableand view names need to be kept in loal memory by the Java lass, the heavyI/O operations being handled by the DBMS. Most of these have built-in memoryspae management and internal query ahing and optimization. This sheltersthe Java lass from design deisions that are out of the sope of the Rough Setsabstration, suh as seleting an internal set storage method.Finally, SQL is a suÆiently powerful language to support most set opera-tions needed by a Rough Set algorithm inluding the subset of, intersetion ofand union of funtions. It is relatively trivial to ode these operations beauseSQL frees us from array and objet-spae onsiderations. The generation ofsubsets is ahieved through the generation of temporary tables or views whihan be disarded to redue storage spae utilization.4.2 Implementing set operations using SQLWithin the DBMS, an element of a set is represented as a row within a table andSQL queries are used to manipulate the set elements as desired. The universeis represented by a master table that ontains the data that is to be proessedby RS1.In the algorithm desribed in Setion 3, two basi types of operations need tobe performed. The generation of sub-sets based on attribute value onstraintsand the set operators \ and �.4.2.1 Generating sub-sets:In order to generate the subsets needed in (1), the possible values of all attributesmust be known. To do this, we use the SQL query listed in Example 1, fromwhih we an obtain the possible values for an attribute. This is repeatedfor eah attribute, enabling the RoughSet lass to generate all possible valueombinations that need to be veri�ed.Example 1 SELECT DISTINCT ATTRIB FROM TABLETo generate the sets we ould use nested sub-queries. However, some SQL im-plementations only have limited support for nested sub-queries, whih would4

make portability an issue.Instead, sub-sets an be generated from the data using either views or tables.Generating the subset using a table means reating a separate table to whihrows are opied (Examples 2 and 3). This takes up disk spae, and the timeneeded to opy the reord. Beause a view is table that is atually a queryof another table, no additional disk spae is needed(Example 4). However, aperformane penalty ours beause a query is run internally by the DBMS.Example 2 CREATE TABLE TMP3976 () INHERITS (MAINTABLE)Example 3 INSERT INTO TMP3976 SELECT * from MAINTABLE WHEREeyes='Blue' AND hair='Red'Example 4 CREATE VIEW TMP3976 AS SELECT * FROM MAINTABLEWHERE eyes='Blue' AND hair='Red'4.2.2 Coding set funtions:After the sub-sets have been generated, both the intersetion funtion and theinlusion funtions need to be implemented in order to determine if (3) or (2)our.In the ase of (2), the result needed is the presene of data in the intersetionbetween two sets. This is implemented in Example 5 where the number ofelements within the intersetion are ounted and returned to the Java lass.Example 5 SELECT COUNT(ITEM) FROM TABLE1 WHERE ITEM IN(SELECT ITEM FROM TABLE2)A variation of this query is used in Example 6 to implement (3). In orderfor TABLE1 to be inluded in TABLE2, all the elements from it must be part ofTABLE2. Therefore, the ount returned from the SQL query most be 0.Example 6 SELECT COUNT(ITEM) FROM TABLE1 WHERE ITEM NOTIN (SELECT ITEM FROM TABLE2)5 Testing of algorithmThe implementation was tested on two sample data sets and the output om-pared with hand-derived expeted results. The two data sets were those pre-sented in [1℄ whih have been reprodued in tables 1 and 2. The output resultsare provided in the remainder of this setion. A partial trae of the algorithmfor the data pesented in table 1 is provided in Appendix A.5

item height hair eyes lass1 Short Dark Blue -2 Tall Dark Blue -3 Tall Dark Brown -4 Tall Red Blue +5 Short Blond Blue +6 Tall Blond Brown -7 Tall Blond Blue +8 Short Blond Brown -Table 1: Test Data Set 1
id weight sex lassE1 Heavy F +E2 Heavy M +E3 Medium M -E4 Medium F -E5 Light M +E6 Light M +E7 Light F +E8 Light F -E9 Light M -E10 Light F -Table 2: Test Data Set 2height='Short' ! lass='+' overs 3 row(s) (1 positive row(s)).height='Tall' ! lass='+' overs 5 row(s) (2 positive row(s)).hair='Blond' ! lass='+' overs 4 row(s) (2 positive row(s)).eyes='Blue' ! lass='+' overs 5 row(s) (3 positive row(s)).Table 3: Upper bound rules for Table 1.5.1 Results after proessing table 1The following results were onsistent with the hand-derived results for the in-formation ontained in table 1.5.2 Results after proessing table 2The following results were onsistent with the hand-derived results for the in-formation ontained in table 2.6 ConlusionThe implementation of the RS1 Rough Sets Indutive Algorithm with a DatabaseManagement System was suessful. The expeted results presented in [1℄ or-hair='Blond' ^ eyes='Blue' ! lass='+' overs 2 positive row(s).hair='Red' ! lass='+' overs 1 postive row(s).Table 4: Lower bound rules for Table 1, without the Upper bound.6

weight='Light' ! lass='+' overs 6 row(s) (3 positive row(s)).sex='F' ! lass='+' overs 5 row(s) (2 positive row(s)).sex='M' ! lass='+' overs 5 row(s) (3 positive row(s)).Table 5: Upper bound rules for Table 2.weight='Heavy' ^ sex='F' ! lass='+' overs 1 positive row(s).weight='Heavy' ^ sex='M'! lass='+' overs 1 positive row(s).Table 6: Lower bound rules for Table 2, without the Upper bound.responded to those returned by our RS1 Java implementation, and are listed inSetions 5.1 and 5.2.A Sample program trae/*** Initialise ***/RoughSet: Conneting to database.RoughSet: Loaded olumn:[item, height, hair, eyes, lass, ℄RoughSet: Cheking for Class Column [lass℄.RoughSet: Cheking for ID Column [item℄./*** Generate a sub-set of all positive lass rows. ***/reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7574 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7574 SELECT* FROM roughtest WHERE lass='+'℄.reateSubSet: Inserted [3℄ rows into table./*** Find �rst pivot. ***/generateRules: Working on Attribute [height℄.generateRules: Using table [TMP3769℄ to store Lower Bound.generateRules: Using table [TMP1806℄ to store Upper Bound./*** For eah possible value of the attribute, generate a subset of rows. ***//*** For eah subset deide if it belong to the upper or lower bound. ***/generateRules: Working on Attribute [height℄ with value [Short℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1311 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1311 SELECT7

* FROM roughtest WHERE height='Short'℄.reateSubSet: Inserted [3℄ rows into table.generateRules: Working on Attribute [height℄ with value [Tall℄.reateSubSet: Will write out a subset to table [TMP2118℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP2118 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP2118 SELECT* FROM roughtest WHERE height='Tall'℄.reateSubSet: Inserted [5℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [height℄ has an alpha value of [0.0℄.generateRules: This Alpha of [0.0℄ is better than best Alpha of [-1.0℄./*** Try with next attribute. ***/generateRules: Working on Attribute [hair℄.generateRules: Using table [TMP6874℄ to store Lower Bound.generateRules: Using table [TMP2093℄ to store Upper Bound./*** For eah possible value of the attribute, generate a subset of rows. ***//*** For eah subset deide if it belongs to the upper or lower bound. ***/generateRules: Working on Attribute [hair℄ with value [Blond℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1991 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1991 SELECT* FROM roughtest WHERE hair='Blond'℄.reateSubSet: Inserted [4℄ rows into table.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1866 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1866 SELECT* FROM roughtest WHERE hair='Dark'℄.reateSubSet: Inserted [3℄ rows into table.generateRules: Working on Attribute [hair℄ with value [Red℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7007 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7007 SELECT* FROM roughtest WHERE hair='Red'℄.reateSubSet: Inserted [1℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [hair℄ has an alpha value of [0.5℄.generateRules: This Alpha of [0.5℄ is better than best Alpha of [0.0℄./*** Try with next attribute. ***/ 8

generateRules: Working on Attribute [eyes℄.generateRules: Using table [TMP2053℄ to store Lower Bound.generateRules: Using table [TMP1910℄ to store Upper Bound./*** For eah possible value of the attribute, generate a subset of rows. ***//*** For eah subset deide if it belong to the upper or lower bound. ***/generateRules: Working on Attribute [eyes℄ with value [Blue℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP9680 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP9680 SELECT* FROM roughtest WHERE eyes='Blue'℄.reateSubSet: Inserted [5℄ rows into table.generateRules: Working on Attribute [eyes℄ with value [Brown℄.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1701 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1701 SELECT* FROM roughtest WHERE eyes='Brown'℄.reateSubSet: Inserted [3℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [eyes℄ has an alpha value of [0.375℄./*** End of �rst iteration, dump the pivot attribute's rules ***//*** to the results table and prune the universe data table. ***/generateRules: Best Attribute was [hair℄ with an Alpha of [0.5℄,storing lower bound and reursing.storeRules: Storing lower bound rule(s) over [1℄ olumns from table[TMP6874℄ to table [RULEL℄.storeRules: Will send [SELECT DISTINCT hair, lass FROM TMP6874℄as SQL Soup.storeRules: Will send [INSERT INTO RULEL (hair, lass) VALUES ('Red', '+')℄as SQL Soup.storeRules: Storing upper bound rule(s) over [1℄ olumns from table[TMP6874℄ to table [RULEH℄.storeRules: Will send [SELECT DISTINCT hair, lass FROM TMP6874℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair, lass) VALUES ('Red', '+')℄as SQL Soup.storeRules: Storing upper bound rule(s) over [1℄ olumns from table[TMP2093℄ to table [RULEH℄.storeRules: Will send [SELECT DISTINCT hair, lass FROM TMP2093℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair, lass) VALUES ('Blond', '+')℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair, lass) VALUES ('Blond', '-')℄9

as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair, lass) VALUES ('Red', '+')℄as SQL Soup.reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP4285 () INHERITS(roughtest)℄.reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP4285 SELECT* FROM roughtest WHERE lass='+'℄.reateSubSet: Inserted [3℄ rows into table./*** Generate a sub-set of all positive lass rows. ***/generateRules: Created table [TMP4285℄ as positive referene lass.generateRules: Pivoting on at least [hair℄./*** Using hair as a pivot, repeat proess for ***//*** both left-over attributes and pik best alpha. ***/generateRules: Working on Attribute [height℄.(...)generateRules: Attribute [height℄ has an alpha value of [0.5℄.generateRules: This Alpha of [0.5℄ is better than best Alpha of [-1.0℄.(...)generateRules: Attribute [eyes℄ has an alpha value of [1.0℄.generateRules: This Alpha of [1.0℄ is better than best Alpha of [0.5℄.generateRules: Best Attribute was [eyes℄ with an Alpha of [1.0℄,storing lower bound and reursing./*** Seond best attribute is eyes, dump the pivot ***//*** attribute's to the results table and prune the Universe data table.***/generateRules: No rows left in universe, exit.*** Finished proessing ***Referenes[1℄ Wong, S. K. M., Ziarko, W., Ye, R. L., \Comparison of rough-set andstatistial methods in indutive learning", International Journal of Man-Mahine Studies (1986) 24, pp. 53-72[2℄ J.A. Johnson and H. Li. Rough set approah for deadlok detetion inPetri nets. In Pro. International Conferene on Arti�ial Intelligene IC-AI, 2000. Las Vegas, Nevada, USA, June.[3℄ J. Johnson and M. Liu. The language REFINE. In Pro. 4th Joint Con-ferene in Information Siene JCIS'98, volume II, pages 367{370, 1998.[4℄ J. Johnson and M. Liu. Rough sets for informative question answer-ing. Journal of Computing and Information, 3(1), 1998. Available on-linehttp://www.ji.trentu.a/ji/vol.3.10

[5℄ A. Liang, M. Maguire, and J.A. Johnson. Rough set based Webt learning.In Pro. First International Conferene on Web-Age Information Manage-ment WIAM, 2000. Shanghai, China, June.[6℄ J. Johnson. Rough mereology for industrial design. In L. Polkowski andA. Skowron, editors, Rough Sets and Current Trends in Computing, pages553{556. Springer, 1998.[7℄ J.A. Johnson. Rough sheduling. In Pro. 5th Joint Conferene in Infor-mation Siene JCIS 2000, volume 1, pages 162{165, 2000.[8℄ J.A. Johnson, X. D. Yang, and Q. Hu. Word sense disambiguation in therough. In Pro. Fourth Symposium on Natural Language Proessing SNLP,2000. Chiangmai, Thailand, May.[9℄ http://www.idt.unit.no/ aleks/rosetta/features.htm

11

