
A Java implementationof the RS1 algorithm using SQLRobert H. Warrenwarren�
s.uregina.
a Julia A. Johnsonjulia�
s.laurentian.
aDepartment of Computer S
ien
eUniversity of ReginaRegina, Saskat
hewanCanada S4S 0A2Te
hni
al Report TR-2000-03ISBN 0-7731-0399-6Abstra
tThis paper des
ribes a Java implementation of the RS1 Rough Setsalgorithm, that leverages the use of a Data Base Management System(DBMS) with Stru
tured Query Language (SQL). DBMS use ensures thatlarge information tables
an be pro
essed by the algorithm, while keepingthe
omputational resour
e needs of the Java
lass low.The algorithm is implemented within a single Java
lass, making it idealnot only for Rough Set resear
h, but as an add-on to non Rough Setproje
ts.Keywords Java, Rough Set Implementation, Database Management Sys-tem

1

1 Introdu
tionRS1 is a Rough Sets indu
tion algorithm developed by Wong, Ziarko and Ye in1986 for generating de
ision rules based on a table of in
onsistent information.[1℄A Java implementation of the RS1 algorithm is des
ribed. The algorithm logi
was written in the Java language, while the a
tual data manipulation was per-formed through the Java DataBase Conne
tivity (JDBC) pa
kage. The rela-tional database used to manage the a
tual data set was the open sour
e Post-gresql database pa
kage whi
h supports the SQL query language. This Javaimplementation is being developed in the
ontext of a diversity of appli
ationsof Rough Sets te
hniques for dealing with in
onsistent and in
omplete knowl-edge bases.[8, 6, 5, 4, 3, 2, 7℄2 Obje
tiveThe obje
tive of this resear
h is the implementation of an indu
tive Rough Setsalgorithm to serve as a kernel from whi
h additional Rough Sets resear
h
anbe performed. While mu
h work has been done,
ommer
ially available imple-mentations of RS algorithms are few. Most implementations are experimentaland monolithi
. (eg: In the
ase of Rosetta[9℄, the implementation is a
losedpa
kage who's
apabilities
annot be extended.) In this implementation, thepro
essing is done within a single
lass �le, thus making it relatively simple tointegrate into other appli
ations.Rough Sets is based on set theory and requires vast amounts of set operationswhi
h DBMS are ideally suited to perform. Traditionally, these set operationswere performed lo
ally within the algorithm development environment. Thisensured a lo
alized treatment of the set information, sometimes at the expenseof resour
e eÆ
ien
y, as the me
hani
s of data manipulation took se
ond pla
eto the primary obje
tive of implementing Rough Sets.The novelty of our work lies in the use of a DBMS to perform the datapro
essing fun
tions of the Rough Sets algorithm. In most implementations[9℄,DBMS use is limited to the import or export of data to and from the Rough Setimplementation. This is unfortunate, be
ause DBMSs are designed to handlelarge volumes of data and eÆ
iently manipulate them based on both queries and
onstraints. Be
ause the DBMS a

ess is done through the JDBC pa
kage, theoverhead of a

essing information tables is kept at a minimum while ensuringthat a maximum number of data sour
es
an be used. This resear
h is meantas a proof of
on
ept as to the use of Data Base Management Systems (DBMS)with Rough Set algorithms.3 RS1 algorithm des
riptionThe RS1 algorithm is an algorithm that fun
tions by in
rementally sele
ting aseries of attributes around whi
h to \pivot", generating rule sets of in
reasing
omplexity until all examples in the universe are
overed.2

At �rst, ea
h attribute (Ai) is individually pro
essed, and for ea
h of it'spossible values (Vij), a subset (Sij) of the universe (E) is generated(1). Ea
hof these subsets
an be part of the Upper Bound(Y), the Lower Bound (Y) ornot part of anything. mXi=1 niXj=1 Sij = subset(E;Ai = Vij) (1)The set of all positive
lass examples is generated as a subset (S+), and theattribute subset (Sij) is part of the Lower Bound if it interse
ts with this
lasssubset(3). Likewise, an attribute subset (Sij) is part of the Upper Bound if itis in
luded within this
lass subset(2).Sij � Y () (Sij \ S+) (2)Sij � Y () (Sij � S+) (3)Then a quality value represented by � is generated for ea
h attribute (4).The attribute with the largest value of � then be
omes the pivot attribute forthe next iteration. The universe of possible elements is
leared of rows that arealready
overed by the rule set using the equation (5).� = 1� jY � Y jjEj (4)E = E � [(E � Y) [Y ℄ (5)Using the pivot attribute, the list of attribute is traversed again and newsubsets are generated for ea
h of the value
ombinations for pivot and attribute.The Lower and Upper bounds are again generated and the attribute with thebest � is joined to the pivot, so that we now have a two attribute pivot.The pro
ess is repeated again, adding attributes to the pivot, until we eitherrun out of attributes or the universe be
omes empty.4 Implementation des
riptionThe implementation in Java is based on a slightly modi�ed RS1 algorithm. Theimplementation is a restri
tion of the RS1 algorithm as only one positive de
i-sion
lass is
urrently supported and an unique identifying attribute is needed.In order to optimize for a large, real-world, appli
ation a DBMS was used tostore and retrieve the the set information using SQL queries. The sour
e
odeis not reviewed here for spa
e
onsiderations; instead the implementation of setoperations using SQL is examined as this forms the
ornerstone of the imple-mentation. 3

4.1 A rational for the use of SQLData Base Management Systems (DBMS) are fairly mature, robust and stan-dardized systems. They are able to store and pro
ess large amounts of tabulardata through the use of Stru
tured Query Language (SQL).The use of a DBMS greatly redu
es the amount of
ode required to imple-ment the RS1 algorithm be
ause it allows the a
tual me
hani
s of informationmanipulation to be dispat
hed to the DBMS. Instead of �ne-tuning the algo-rithm to the parti
ulars of �le I/O, we
an rely on the engineering embeddedwithin the DBMS to self-optimize the operations required to implement the RS1algorithm.Furthermore, o�oading the table operations to the DBMS ensures that thememory
onsumption by the Rough Set algorithm will be low. Only the tableand view names need to be kept in lo
al memory by the Java
lass, the heavyI/O operations being handled by the DBMS. Most of these have built-in memoryspa
e management and internal query
a
hing and optimization. This sheltersthe Java
lass from design de
isions that are out of the s
ope of the Rough Setsabstra
tion, su
h as sele
ting an internal set storage method.Finally, SQL is a suÆ
iently powerful language to support most set opera-tions needed by a Rough Set algorithm in
luding the subset of, interse
tion ofand union of fun
tions. It is relatively trivial to
ode these operations be
auseSQL frees us from array and obje
t-spa
e
onsiderations. The generation ofsubsets is a
hieved through the generation of temporary tables or views whi
h
an be dis
arded to redu
e storage spa
e utilization.4.2 Implementing set operations using SQLWithin the DBMS, an element of a set is represented as a row within a table andSQL queries are used to manipulate the set elements as desired. The universeis represented by a master table that
ontains the data that is to be pro
essedby RS1.In the algorithm des
ribed in Se
tion 3, two basi
 types of operations need tobe performed. The generation of sub-sets based on attribute value
onstraintsand the set operators \ and �.4.2.1 Generating sub-sets:In order to generate the subsets needed in (1), the possible values of all attributesmust be known. To do this, we use the SQL query listed in Example 1, fromwhi
h we
an obtain the possible values for an attribute. This is repeatedfor ea
h attribute, enabling the RoughSet
lass to generate all possible value
ombinations that need to be veri�ed.Example 1 SELECT DISTINCT ATTRIB FROM TABLETo generate the sets we
ould use nested sub-queries. However, some SQL im-plementations only have limited support for nested sub-queries, whi
h would4

make portability an issue.Instead, sub-sets
an be generated from the data using either views or tables.Generating the subset using a table means
reating a separate table to whi
hrows are
opied (Examples 2 and 3). This takes up disk spa
e, and the timeneeded to
opy the re
ord. Be
ause a view is table that is a
tually a queryof another table, no additional disk spa
e is needed(Example 4). However, aperforman
e penalty o

urs be
ause a query is run internally by the DBMS.Example 2 CREATE TABLE TMP3976 () INHERITS (MAINTABLE)Example 3 INSERT INTO TMP3976 SELECT * from MAINTABLE WHEREeyes='Blue' AND hair='Red'Example 4 CREATE VIEW TMP3976 AS SELECT * FROM MAINTABLEWHERE eyes='Blue' AND hair='Red'4.2.2 Coding set fun
tions:After the sub-sets have been generated, both the interse
tion fun
tion and thein
lusion fun
tions need to be implemented in order to determine if (3) or (2)o

ur.In the
ase of (2), the result needed is the presen
e of data in the interse
tionbetween two sets. This is implemented in Example 5 where the number ofelements within the interse
tion are
ounted and returned to the Java
lass.Example 5 SELECT COUNT(ITEM) FROM TABLE1 WHERE ITEM IN(SELECT ITEM FROM TABLE2)A variation of this query is used in Example 6 to implement (3). In orderfor TABLE1 to be in
luded in TABLE2, all the elements from it must be part ofTABLE2. Therefore, the
ount returned from the SQL query most be 0.Example 6 SELECT COUNT(ITEM) FROM TABLE1 WHERE ITEM NOTIN (SELECT ITEM FROM TABLE2)5 Testing of algorithmThe implementation was tested on two sample data sets and the output
om-pared with hand-derived expe
ted results. The two data sets were those pre-sented in [1℄ whi
h have been reprodu
ed in tables 1 and 2. The output resultsare provided in the remainder of this se
tion. A partial tra
e of the algorithmfor the data pesented in table 1 is provided in Appendix A.5

item height hair eyes
lass1 Short Dark Blue -2 Tall Dark Blue -3 Tall Dark Brown -4 Tall Red Blue +5 Short Blond Blue +6 Tall Blond Brown -7 Tall Blond Blue +8 Short Blond Brown -Table 1: Test Data Set 1
id weight sex
lassE1 Heavy F +E2 Heavy M +E3 Medium M -E4 Medium F -E5 Light M +E6 Light M +E7 Light F +E8 Light F -E9 Light M -E10 Light F -Table 2: Test Data Set 2height='Short' !
lass='+'
overs 3 row(s) (1 positive row(s)).height='Tall' !
lass='+'
overs 5 row(s) (2 positive row(s)).hair='Blond' !
lass='+'
overs 4 row(s) (2 positive row(s)).eyes='Blue' !
lass='+'
overs 5 row(s) (3 positive row(s)).Table 3: Upper bound rules for Table 1.5.1 Results after pro
essing table 1The following results were
onsistent with the hand-derived results for the in-formation
ontained in table 1.5.2 Results after pro
essing table 2The following results were
onsistent with the hand-derived results for the in-formation
ontained in table 2.6 Con
lusionThe implementation of the RS1 Rough Sets Indu
tive Algorithm with a DatabaseManagement System was su

essful. The expe
ted results presented in [1℄
or-hair='Blond' ^ eyes='Blue' !
lass='+'
overs 2 positive row(s).hair='Red' !
lass='+'
overs 1 postive row(s).Table 4: Lower bound rules for Table 1, without the Upper bound.6

weight='Light' !
lass='+'
overs 6 row(s) (3 positive row(s)).sex='F' !
lass='+'
overs 5 row(s) (2 positive row(s)).sex='M' !
lass='+'
overs 5 row(s) (3 positive row(s)).Table 5: Upper bound rules for Table 2.weight='Heavy' ^ sex='F' !
lass='+'
overs 1 positive row(s).weight='Heavy' ^ sex='M'!
lass='+'
overs 1 positive row(s).Table 6: Lower bound rules for Table 2, without the Upper bound.responded to those returned by our RS1 Java implementation, and are listed inSe
tions 5.1 and 5.2.A Sample program tra
e/*** Initialise ***/RoughSet: Conne
ting to database.RoughSet: Loaded
olumn:[item, height, hair, eyes,
lass, ℄RoughSet: Che
king for Class Column [
lass℄.RoughSet: Che
king for ID Column [item℄./*** Generate a sub-set of all positive
lass rows. ***/
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7574 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7574 SELECT* FROM roughtest WHERE
lass='+'℄.
reateSubSet: Inserted [3℄ rows into table./*** Find �rst pivot. ***/generateRules: Working on Attribute [height℄.generateRules: Using table [TMP3769℄ to store Lower Bound.generateRules: Using table [TMP1806℄ to store Upper Bound./*** For ea
h possible value of the attribute, generate a subset of rows. ***//*** For ea
h subset de
ide if it belong to the upper or lower bound. ***/generateRules: Working on Attribute [height℄ with value [Short℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1311 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1311 SELECT7

* FROM roughtest WHERE height='Short'℄.
reateSubSet: Inserted [3℄ rows into table.generateRules: Working on Attribute [height℄ with value [Tall℄.
reateSubSet: Will write out a subset to table [TMP2118℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP2118 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP2118 SELECT* FROM roughtest WHERE height='Tall'℄.
reateSubSet: Inserted [5℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [height℄ has an alpha value of [0.0℄.generateRules: This Alpha of [0.0℄ is better than best Alpha of [-1.0℄./*** Try with next attribute. ***/generateRules: Working on Attribute [hair℄.generateRules: Using table [TMP6874℄ to store Lower Bound.generateRules: Using table [TMP2093℄ to store Upper Bound./*** For ea
h possible value of the attribute, generate a subset of rows. ***//*** For ea
h subset de
ide if it belongs to the upper or lower bound. ***/generateRules: Working on Attribute [hair℄ with value [Blond℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1991 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1991 SELECT* FROM roughtest WHERE hair='Blond'℄.
reateSubSet: Inserted [4℄ rows into table.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1866 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1866 SELECT* FROM roughtest WHERE hair='Dark'℄.
reateSubSet: Inserted [3℄ rows into table.generateRules: Working on Attribute [hair℄ with value [Red℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP7007 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP7007 SELECT* FROM roughtest WHERE hair='Red'℄.
reateSubSet: Inserted [1℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [hair℄ has an alpha value of [0.5℄.generateRules: This Alpha of [0.5℄ is better than best Alpha of [0.0℄./*** Try with next attribute. ***/ 8

generateRules: Working on Attribute [eyes℄.generateRules: Using table [TMP2053℄ to store Lower Bound.generateRules: Using table [TMP1910℄ to store Upper Bound./*** For ea
h possible value of the attribute, generate a subset of rows. ***//*** For ea
h subset de
ide if it belong to the upper or lower bound. ***/generateRules: Working on Attribute [eyes℄ with value [Blue℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP9680 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP9680 SELECT* FROM roughtest WHERE eyes='Blue'℄.
reateSubSet: Inserted [5℄ rows into table.generateRules: Working on Attribute [eyes℄ with value [Brown℄.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP1701 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP1701 SELECT* FROM roughtest WHERE eyes='Brown'℄.
reateSubSet: Inserted [3℄ rows into table./*** Generate alpha based on upper and lower bound. ***/generateRules: Attribute [eyes℄ has an alpha value of [0.375℄./*** End of �rst iteration, dump the pivot attribute's rules ***//*** to the results table and prune the universe data table. ***/generateRules: Best Attribute was [hair℄ with an Alpha of [0.5℄,storing lower bound and re
ursing.storeRules: Storing lower bound rule(s) over [1℄
olumns from table[TMP6874℄ to table [RULEL℄.storeRules: Will send [SELECT DISTINCT hair,
lass FROM TMP6874℄as SQL Soup.storeRules: Will send [INSERT INTO RULEL (hair,
lass) VALUES ('Red', '+')℄as SQL Soup.storeRules: Storing upper bound rule(s) over [1℄
olumns from table[TMP6874℄ to table [RULEH℄.storeRules: Will send [SELECT DISTINCT hair,
lass FROM TMP6874℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair,
lass) VALUES ('Red', '+')℄as SQL Soup.storeRules: Storing upper bound rule(s) over [1℄
olumns from table[TMP2093℄ to table [RULEH℄.storeRules: Will send [SELECT DISTINCT hair,
lass FROM TMP2093℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair,
lass) VALUES ('Blond', '+')℄as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair,
lass) VALUES ('Blond', '-')℄9

as SQL Soup.storeRules: Will send [INSERT INTO RULEH (hair,
lass) VALUES ('Red', '+')℄as SQL Soup.
reateSubSet: Creating table with SQL SOUP [CREATE TABLE TMP4285 () INHERITS(roughtest)℄.
reateSubSet: Will insert rows using SQL SOUP [INSERT INTO TMP4285 SELECT* FROM roughtest WHERE
lass='+'℄.
reateSubSet: Inserted [3℄ rows into table./*** Generate a sub-set of all positive
lass rows. ***/generateRules: Created table [TMP4285℄ as positive referen
e
lass.generateRules: Pivoting on at least [hair℄./*** Using hair as a pivot, repeat pro
ess for ***//*** both left-over attributes and pi
k best alpha. ***/generateRules: Working on Attribute [height℄.(...)generateRules: Attribute [height℄ has an alpha value of [0.5℄.generateRules: This Alpha of [0.5℄ is better than best Alpha of [-1.0℄.(...)generateRules: Attribute [eyes℄ has an alpha value of [1.0℄.generateRules: This Alpha of [1.0℄ is better than best Alpha of [0.5℄.generateRules: Best Attribute was [eyes℄ with an Alpha of [1.0℄,storing lower bound and re
ursing./*** Se
ond best attribute is eyes, dump the pivot ***//*** attribute's to the results table and prune the Universe data table.***/generateRules: No rows left in universe, exit.*** Finished pro
essing ***Referen
es[1℄ Wong, S. K. M., Ziarko, W., Ye, R. L., \Comparison of rough-set andstatisti
al methods in indu
tive learning", International Journal of Man-Ma
hine Studies (1986) 24, pp. 53-72[2℄ J.A. Johnson and H. Li. Rough set approa
h for deadlo
k dete
tion inPetri nets. In Pro
. International Conferen
e on Arti�
ial Intelligen
e IC-AI, 2000. Las Vegas, Nevada, USA, June.[3℄ J. Johnson and M. Liu. The language REFINE. In Pro
. 4th Joint Con-feren
e in Information S
ien
e JCIS'98, volume II, pages 367{370, 1998.[4℄ J. Johnson and M. Liu. Rough sets for informative question answer-ing. Journal of Computing and Information, 3(1), 1998. Available on-linehttp://www.j
i.trentu.
a/j
i/vol.3.10

[5℄ A. Liang, M. Maguire, and J.A. Johnson. Rough set based Web
t learning.In Pro
. First International Conferen
e on Web-Age Information Manage-ment WIAM, 2000. Shanghai, China, June.[6℄ J. Johnson. Rough mereology for industrial design. In L. Polkowski andA. Skowron, editors, Rough Sets and Current Trends in Computing, pages553{556. Springer, 1998.[7℄ J.A. Johnson. Rough s
heduling. In Pro
. 5th Joint Conferen
e in Infor-mation S
ien
e JCIS 2000, volume 1, pages 162{165, 2000.[8℄ J.A. Johnson, X. D. Yang, and Q. Hu. Word sense disambiguation in therough. In Pro
. Fourth Symposium on Natural Language Pro
essing SNLP,2000. Chiangmai, Thailand, May.[9℄ http://www.idt.unit.no/ aleks/rosetta/features.htm

11

